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Invited lectures

Decomposition of a Language of

Factors into Sets of Bounded

Complexity∗

Julien Cassaigne

Institut de mathématiques de Marseille, Marseille, France

We explore a new hierarchy of classes of languages and infinite words
and its connection with complexity classes. Namely, we say that a lan-
guage belongs to class Lk if it is a subset of the catenation of k languages
S1, ..., Sk , where the number of words of length n in each Si is bounded
by a constant. An infinite word belongs to class Wk if its language of
factors is in Lk. We focus on the relations between classes Wk and the
factor complexity of infinite words. In particular, we prove that class W2

coincides with the class of infinite words of linear complexity, but there is
no such simple characterization for other Wk and for Lk.

∗joint work with Anna Frid, Svetlana Puzynina, and Luca Q. Zamboni

c© J. Cassaigne, 2014
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Piecewise Affine Functions, Sturmian

Sequences and Aperiodic Tilings

Jarkko Kari

Department of Mathematics, University of Turku
Turku, Finland

We discuss constructions of Wang tilings that simulate iterations of
piecewise rational affine functions. Our simulations use representations
of real numbers as Sturmian sequences. The method provides smallest
known aperiodic Wang tile sets, and leads to a simple proof of the un-
decidability of the domino problem. One also easily establishes analo-
gous undecidability results about tilings of the hyperbolic plane and of
Baumslag-Solitar groups.

c© J. Kari, 2014
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Combinatorial Geometry and Coding

Theory∗

Andrei M. Raigorodskii

Moscow State University, Mechanics and Mathematics Faculty,
Department of Mathematical Statistics and Random Processes,

Moscow, Russia
Moscow Institute of Physics and Technology, Faculty of Innovations and

High Technology, Department of Discrete Mathematics
Moscow Region, Dolgoprudny, Russia

Yandex Division of Theoretical and Applied Research
Moscow, Russia

In our talk, we will be mainly concerned with subjects that lie on the
edge of combinatorial geometry and coding theory. As for combinatorial
geometry, the two problems, which are most important and closely con-
nected to each other, are the Nelson–Hadwiger problem on finding the
space chromatic number and the Borsuk problem on partitioning sets in
spaces into parts of smaller diameter. It turns out that the strongest ex-
isting results for both problems are obtained with the help of systems of
(0,1)-vectors with forbidden scalar products and their generalizations onto
arbibtrary finite systems of vectors in Zn with similar restrictions. Here
we naturally come to some classical as well as completely novel concepts
and problems of coding theory.

In the lecture, we will first give a survey of results for the Nelson–
Hadwiger and Borsuk problems. Then we shall proceed to discussing
related coding-theoretic questions concerning (0,1)-vectors and other in-
teger point systems. We will also speak about probabilistic versions of

∗This work is done under the financial support of the following grants: the grant
12-01-00683 of Russian Foundation for Basic Research, the grant MD-6277.2013.1 of
the Russian President, the grant NSh-2519.2012.1 supporting Leading scientific schools
of Russia.

c©A.M. Raigorodskii, 2014
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these questions, by defining random subgraphs of some important “dis-
tance graphs” and treating of their properties. In particular, we will
exhibit very recent results on the stability of some classical extremal val-
ues in coding theory. Finally, we shall formulate conjectures and open
questions.
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On Polynomials of Birch-Chowla-

Hall-Schinzel-Davenport-Stothers-

Zannier-Beukers-Stewart and

Weighted Plane Trees

Alexander Zvonkin

University of Bordeaux, France

In 1965, Birch, Chowla, Hall, and Schinzel, motivated by certain prob-
lems in number theory, raised the following question: given two complex
polynomials A and B, what could be the least possible degree of A3−B2 (if
this difference is not identically zero)? They conjectured a lower bound,
and also supposed that this bound was sharp. The bound itself was proved
the same year by Davenport, its sharpness was proved by Stothers in 1981.
In 1995, Zannier generalized the problem and established both a lower
bound and its sharpness for the degree of the difference of two polynomials
with given multiplicities of their roots. In 2010, Beukers and Stewart re-
turned once again to a particular case of the difference of the type Ap−Bq

but this time they looked for polynomials with rational coefficients. In
our joint work with Fedor Pakovich (University of Beer Sheva, Israel) we
established a correspondence between the pairs of polynomials satisfying
Zannier’s bound, on the one hand, and bicolored plane trees whose edges
are endowed with integral weights. If, for a given set of degrees of black
and white vertices, the tree in question is unique, then the corresponding
polynomials have rational coefficients. We give a complete classification
of such trees, and have computed all the corresponding polynomials. We
have also considered various combinatorial invariants of the Galois action
on weighted trees. In particular, in a joint work with Nikolai Adrianov
(Moscow University) we obtained a complete classification of the primitive
monodromy groups of weighted trees.

c© A. Zvonkin, 2014
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Contributed talks

Approximation of Reset Thresholds

with Greedy Algorithms

Dimitry S. Ananichev, Vladimir V. Gusev

Institute of Mathematics and Computer Science,
Ural Federal University, Ekaterinburg, Russia

Abstract

The problem of approximate computation of the reset thresh-
olds of automata gained a lot of attention recently. We introduce a
broad class of the algorithms and analyze approximation ratios of
algorithms in this class. We present two different series of automata
that reveal inherent limitations of greedy strategies for approxima-
tion of the reset thresholds.

1. Introduction
Let A be a deterministic finite automaton over the finite alphabet Σ

with the set of states Q and the transition function δ. Automaton A is
called synchronizing if there exist a word w and a state p such that for
every state q ∈ Q we have δ(q, w) = p. Any such word w is called reset
(or synchronizing) word for A . The length of the shortest synchronizing
word is called reset threshold (rt(A )) of A . Survey of the theory of
synchronizing automata may be found in [6].

In the present note we deal with algorithmic aspects of the following
problem: given an automaton A , find its reset threshold. We will refer
to this problem as RT. Decision version of RT is NP -complete [3], i.e. for
a fixed k, determine whether the reset threshold of a given automaton

c©D.S. Ananichev, V.V. Gusev, 2014



Approximation of Reset Thresholds 15

is at most k. The problem itself is FPNP [log]-complete [5]. Due to this
facts, we wonder whether the reset threshold of an automaton can be
approximated well. Unfortunately [4], for a fixed constant C there is no
C · log(n)-approximation algorithm for RT, where n is the number of states
(unless P = NP ). This statement remains true even if we restrict our-
selves to two-letter automata [2]. At the same time, for every k ≥ 2 there
is a polynomial-time algorithm with approximation ratio ⌈n−1

k−1 ⌉. Such ap-
proximation is the best among currently known algorithms. Thus, precise
value of the best possible approximation ratio for RT remains unclear. In
the present note we introduce a broad class of the algorithms and analyze
approximation ratios of algorithms in this class. We present two different
series of automata that reveal inherent limitations of greedy strategies for
approximation of the reset thresholds.

2. Main results
We will write |S| for the size of a set S and ε for the empty word.

Arguably the most common type of algorithms for RT is the following
one:
SY NCH − SUBSET (k)
Input: Synchronizing automaton A = 〈Q,Σ, δ〉
1. S = Q
2. u = ε
3. Until |S| == 1 do

4. If |S| ≥ k:
5. Choose a set of states P ⊆ S s.t. |P | = k
6. Else:

7. P = S
8. Choose a word v s.t. |δ(P, v)| = 1
9. u = u · v
10. S = δ(S, v)
11. Return length of u
For a particular algorithm of this type we need to fix the constant k ≥ 2
and the way we make choices in the lines 5 and 8. It is an easy check that
the latest value of the word u is a reset word for the automaton A .

Performance of SY NCH−SUBSET (k) vary drastically depending on
the “choice-oracles” Oset and Oword in the lines 5 and 8, respectively. For
example, if Oword always returns the shortest reset word of an automaton
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A then the value returned by the algorithm is equal to the reset threshold
of A . At the same time, if Oword returns the α-power of the shortest reset
word of A then approximation ratio of such algorithm is equal to α.

It is clear, that the presented oracles are not polynomial-time com-
putable (otherwise we could solve RT in polynomial-time). The most com-
mon choice of “practical” oracles is based on a greedy strategy. We will
denote the length of a word v by |v|. We say that Oword oracle is greedy
if for any other word v′ with the property |δ(P, v′)| = 1 we have |v| ≤ |v′|.
We say that Oset oracle is greedy if for any other subset P ′ and a word
v′ such that |δ(P ′, v′)| = 1 there is a word v such that |δ(P, v)| = 1 and
|v| ≤ |v′|. Note, there are polynomial-time computable greedy oracles
Oset and Oword.

The analysis of SY NCH−SUBSET (k) with a greedy Oword oracle is
presented in [4]. The following simple lemma is given in the latter paper.

Lemma 1 Approximation ratio of SY NCH−SUBSET (k) with a greedy
Oword oracle is at most ⌈n−1

k−1 ⌉.

The authors also presented an n-state automaton with ⌈n−1
k−1 ⌉ letters for

which approximation ratio of SY NCH − SUBSET (k) with a particular
greedy Oword oracle and a particular Oset oracle is equal to ⌈n−1

k−1 ⌉. Thus,
the bound in lemma 1 is tight. We present an easier example An,k with
only two letters. The set of states of An,k is equal to the set of ordered
pairs (α, β) such that n − 1 ≥ α(k − 1) + β, 0 ≤ α and 0 ≤ β < k − 1.
Additionally, we append a sink state z. Note, the automaton An,k has n
states. The alphabet of An,k is equal to {a, b}. The transition function δ
is defined as follows:

δ((α, β), a) =

{
(α− 1, β), if α > 0

z, otherwise
δ((α, β), b) = z

Also, for every letter ℓ we define δ(z, ℓ) = z. The automaton An,2 is
presented on the fig. 1.

It is a straightforward check that for a particular choice of subsets by
Oset and a particular greedy oracleOword the value returned by SY NCH−
SUBSET (k) on input An,k is ⌈n−1

k−1 ⌉-times larger than rt(An,k). We want
to emphasize, that quite a natural oracle Oword suffice for this statement.
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1 2 3 . . . n− 2 n− 1 z
a a a a a a

a, b

b
b

b
b

b
b

Figure 1: The automata An,2

For example, the one that returns lexicographically the first word v with
the property |δ(P, v)| = 1.

The most important drawback of such example is a complete lack of
foresight by Oword. We can show that approximation ratio of SY NCH−
SUBSET (k) with an arbitrary greedy Oword oracle is at least C · n for
some constant C, but we require greediness of Oset. The following theorem
is one of the main results of our note.

Theorem 1 Approximation ratio of SY NCH − SUBSET (k) with arbi-
trary greedy Oword and Oset oracles is at least n

6(k−1) .

Proof. Automaton Bℓ is defined as in fig. 2. The shortest synchronizing
word for Bn is ab2ℓ−1a of length 2ℓ+ 1.

Let k = 2. Then the greedy algorithm returns the word a(bℓ+1a)ℓ−1

of length 1 + (ℓ + 2)(ℓ − 1) = ℓ2 + ℓ − 1. The number of states in Bℓ is
equal to n = 3ℓ− 1. Thus, approximation ratio

(n+1
3 )2 + (n+1

3 )− 1

2(n+1
3 ) + 1

∼ n

6

Now let k be arbitrary. Note that for the set S = {ℓ, ℓ− 1, ℓ− 2, ..., t}
with t ∈ {1, .., ℓ − k + 1} the shortest word v with the property |S.v| ≤
|S| − k + 1 is bℓ+k−1a. If S = {ℓ, ℓ − 1, ℓ − 2, ..., t} with t ∈ {ℓ − k +
2, .., ℓ− 1} the shortest word v with the property |S.v| = 1 is b2ℓ−ta. Let
ℓ − 1 = q(k − 1) + r, where r ∈ {1, ..., k − 1} and q is integer. Therefore
SY NCH − SUBSET (k) with arbitrary greedy Oword and Oset oracles
returns the word a(bℓ+k−1a)qbℓ+ra of length 1+(ℓ+1)(q+1)+(k−1)q+r =
(ℓ + 1)(q + 2)− 1 = (ℓ + 1)(

⌈
ℓ−1
k−1

⌉
+ 1)− 1 ≥ ℓ2−1

k−1 + ℓ ≥ (ℓ+(1/2))2

k−1 . The
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Figure 2: Automaton Bℓ

number of states in Bℓ is equal to n = 3ℓ− 1. Thus, approximation ratio
is at least

(ℓ+ (1/2))2

k − 1
· 1

2(ℓ+ (1/2))
=
ℓ+ (1/2)

2(k − 1)
>

n

6(k − 1)
.

�

In the theorem 1 the oracle Oset is greedy. In this regard, we state the
following open problem: what is the approximation ratio of SY NCH −
SUBSET (k) with an arbitrary greedy oracle Oword and an arbitrary ora-
cle Oset? Essentially, we are interested whether it isO(n) for a polynomial-
time computable Oset. There is a slight evidence for a positive answer
in the experimental study of SY NCH − SUBSET (2) performed by E.
Tipikin in his master thesis on the series from [6]. He noticed that
SY NCH − SUBSET (2) with a greedy oracle Oword and a particular
oracle Oset performs extremely well on this series. Although, from algo-
rithmical point of view we are mostly interested in polynomial-time com-
putable oracles Oset deep understanding of the general case may reveal
additional properties of synchronizing automata.
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Limit Theorems for the Number of

Multiple Edges in the Configuration

Graph∗

Irina Cheplyukova

Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

Many real complex systems can be represented and studied in terms
of random graphs (see e.g. [2, 1, 3]). The present work focuses on a
random graph constructed by the configuration models with the degree
of vertices distributed identically and independently. We consider two
special cases of such graphs consisting of N + 1 vertices with numbers
0, 1, . . . , N. One of them is the power–law random graph with the degree
of vertices 1, . . . , N distributed according to the law

P{ξ > k} = k−τ , k = 1, 2, . . . , τ ∈ (1, 2).

In the second model the degrees of vertices have a binomial distribution
with parameters (N, p). The vertex 0 has the degree 0 if the sum of degrees
of other vertices is even, otherwise the degree is 1. Those models admit
multiple edges and loops. We study the number of multiple edges with
given vertex degrees.

Choose two vertices of the random graph, for example, vertices with
numbers j and j − 1. Let kj and kj−1 be the degrees of these vertices.
Assume that kj ≤ kj−1. Let λ be random variable equal to the number of
edges joining vertices with numbers j and j − 1. Denote

p(m|kj , kj−1) = P{λ = m|ξj = kj , ξj−1 = kj−1},m = 0, 1, 2, . . .

∗The work is supported by the Russian Foundation for Basic Research, grant 13-
01-00009.

c© I. Cheplyukova, 2014
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We obtain the limit theorems for p(m|kj , kj−1). As an example, we
get the following results. Theorem 1 is valid for the random graph where
vertex degrees have the binomial distribution.

Theorem 1. Let N →∞ such that kj , kj−1 = o(Na), a < 1/2. Then for
m = 0, 1, 2, . . .

p(m|kj , kj−1) =
kj !kj−1!(1 + o(1))

m!(kj −m)!(kj−1 −m)!(λN)m
exp

{
−
k2j
λN
− kjkj−1

λN

}
.

For the power–law random graph we have Theorem 2.

Theorem 2. Let N, kj , kj−1 →∞ such that

k2j
ζ(τ)N

= o(1),
kjkj−1

ζ(τ)N
= O(1), kj−1 = O(N2/3).

Then

p(m|kj , kj−1) =
1 + o(1)

m!

(
kjkj−1

ζ(τ)N

)m

exp

{
−kjkj−1

ζ(τ)N

}
,

where ζ(τ) is the Rimann’s zeta-function.
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The linear complexity and the autocorrelation are important param-
eters of pseudo-random sequences significant for practical applications.
New balanced quaternary sequences with optimal autocorrelation values
ware constructed in [1, 2, 3] using the interval structure and the inverse
Gray map. We investigate the linear complexity and the minimal polyno-
mial of above mentioned sequences over the finite field of four elements.

Let F4 = {0, 1, µ, µ+ 1} be a finite field of four elements. The Gray
mapping φ : Z4 → Z2 × Z2 is defined as

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

If we view F4 as a vector space over F2 with basis µ, 1, then we can
define sequence v, vi ∈ F4 by the inverse Gray map derived from two
binary sequences c, d as:

vi =





0, if ci = di = 0,

1, if ci = 0, di = 1,

µ+ 1, if ci = di = 1,

µ, if ci = 1, di = 0.

(1)

Let a, b be Legendre sequences, Hall sequences or twin-prime sequences.
We investigate the linear complexity of three patterns sequences:

1) c = I(a, L1/2a) and d = I(b, L1/2b + 1), where I and L denote the
interleaved operator and the left cyclic shift operator respectively [3].
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2) [2]

ci =

{
ai, if i ≡ 0(mod2),

ai, if i ≡ 1(mod2).
di =

{
bi, if i ≡ 0(mod2),

bi + 1, if i ≡ 1(mod2).

3) c, d are obtained from 2 various Legendre sequences [1]
We derive parameters of sequences with optimal autocorrelation values

and high linear complexities over the finite field of four elements.
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The object of our research is a classical problem in graph theory —
the Steiner problem. The Steiner problem is widely used in practice, in-
cluding projecting computational circuits and microprocessors, telecom-
munication, gas and oil industries.

The statement of the Steiner problem in graph is the following: There
is weighted graph (M,N) and some subset of vertices T called terminal
set. Find a minimal subgraph that connects all vertices of the terminal
set.

We study the problem in directed graphs where the required graph
must contain paths from the given root b to a set of terminals T . Also we
study the metric problem where the initial graph is placed on plane and
the edge lengths correspond to ”distance” between vertices. As is known,
the Steiner problem in all these statements is NP-hard [1].

Algorithm for finding exact solution for Steiner problem in directed
graphs that uses dynamic programming and Bellman equation is known
[2]. The solution of the posed problem should be found in the context of
the solutions of the set of Steiner problems: the problem is posed for any
vertex of graph considered as a root and any subset of initial terminal set
is considered as a new terminal set.

This method is hardly applicable in practice, because it has exponen-
tial complexity and allows to solve only problems with the set of dozens
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terminal vertices, while there is often a need to solve problems with thou-
sands and even millions terminals. At the same time, it can be considered
as a base to construct some approximative and heuristic algorithms.

In the course of the research we have worked out a set of heuristic
algorithms based on a dynamic programming method. The talk includes
some of them:

• k-cluster algorithm, based on dissection of the initial graph into
not more than k disjoint subgraphs, on every of which a new prob-
lem, induced by the source problem, is posed [3]. Solution of the
original problem is the composition of solutions of all the men-
tioned problems. Solutions provided by this algorithm differs from
exact solution on experimental data (set of 400 problems where
|M | ∈ [80, 640], |N | ∈ [120, 204480], |T | ∈ [6, 160] from SteinLib
problem library [6]) for not more than 5% on average.

• algorithm S∗ for Steiner problem on metric graphs. Its idea implies
reducing amount of the considered subsets of terminal set based
on the information about relative positions of vertices [5]. Several
different ways of reducing are presented. Experiments were con-
ducted on set of 150 generated problems where |M | ∈ [160, 640],
|N | ∈ [2371, 204156], |T | ∈ [20, 120]. Its efficiency was compared
to efficiency of well-known approximation algorithms, with better
results on average.
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In 1994 Michael Burrows and David Wheeler [1] introduced a trans-
formation on words which proved very powerful in data compression. The
aim of the present note is to characterize those words which cluster un-
der the Burrows-Wheeler transform, that is to say which are transformed
into such expressions as 4a3b2c1d or 2a5b3c1d4e. Clustering words on a
binary alphabet have already been extensively studied (see, for instance,
[8, 11]) and identified as particular factors of the Sturmian words. Some
generalizations and partial characterizations to r letters appear in Restivo
and Rosone [13], but it had not yet been observed that clustering words
are intrinsically related to a dynamical object called interval exchange
transformations.

1. Definitions
Let A = {a1 < a2 < · · · < ar} be an ordered alphabet and w =

w1 · · ·wn a primitive word on the alphabet A, i.e., w is not a power of
another word. For simplification we suppose that each letter of A occurs
in w.
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The Parikh vector of w is the integer vector (n1, . . . , nk) where ni is
the number of occurrences of ai in w. The (cyclic) conjugates of w are
the words wi · · ·wnw1 · · ·wi−1, 1 ≤ i ≤ n. As w is primitive, w has pre-
cisely n-cyclic conjugates. Let wi,1 · · ·wi,n denote the i-th conjugate of w
where the n-conjugates of w are ordered by ascending lexicographical or-
der. Then the Burrows-Wheeler transform of w, denoted by B(w), is the
word w1,nw2,n · · ·wn,n. In other words, B(w) is obtained from w by first
ordering its cyclic conjugates in ascending order in a rectangular array,
and then reading off the last column. For instance B(2314132) = 4332211.
We say w is π-clustering if B(w) = anπ1

π1 · · · anπr
πr , where π 6= Id is a permu-

tation on {1, . . . , r}. We say w is perfectly clustering if it is π-clustering
for πi = r + 1 − i, 1 ≤ i ≤ r. For instance 2314132 is perfectly cluster-
ing. Restivo and Rosone [13] showed that if w perfectly clusters, then w
is strongly (or circularly) rich, i.e., w2 has |w2| + 1 distinct palindromic
factors. But this condition is not a characterization of perfectly clustering
words (see Example 6.4 in Restivo and Rosone[13]).

Definition 1 A (continuous) r-interval exchange transformation T with
probability vector
(α1, α2, . . . , αr), and permutation π is defined on the interval [0, 1[, par-
titioned into r intervals

∆i =




∑

j<i

αj ,
∑

j≤i

αj



 ,

by
Tx = x+ τi when x ∈ ∆i,

where τi =
∑

π−1(j)<π−1(i) αj −
∑

j<i αj .

Intuitively this means that the intervals ∆i are re-ordered by T follow-
ing the permutation π. Note that our use of the word “continuous” does
not imply that T is a continuous map on [0, 1[ (though it can be modified
to be made so); it is there to emphasize the difference with its discrete
analogue.

Definition 2 A discrete r-interval exchange transformation T with length
vector (n1, n2, . . . , nr), and permutation π is defined on a set of n1+· · ·+nr
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points x1, . . . , xn1+···+nr partitioned into r intervals

∆i = {xk,
∑

j<i

nj < k ≤
∑

j≤i

nj}

by
Txk = xk+si when xk ∈ ∆i,

where si =
∑

π−1(j)<π−1(i) nj −
∑

j<i nj .

We recall the following notions, defined for any transformation T on
a set X equipped with a partition ∆i, 1 ≤ i ≤ r.

Definition 3 The trajectory of a point x under T is the infinite sequence
(xn)n∈IN defined by xn = i if T nx belongs to ∆i, 1 ≤ i ≤ r. The mapping
T is minimal if whenever E is a nonempty closed subset of X and T−1E =
E, then E = X .

2. Main result

Theorem 1 Let w = w1 · · ·wn be a primitive word on A = {1, . . . , r},
such that every letter of A occurs in w. The following are equivalent:

1. w is π-clustering,

2. ww occurs in a trajectory of a minimal discrete r-interval exchange
transformation with permutation π,

3. ww occurs in a trajectory of a discrete r-interval exchange transfor-
mation with permutation π,

4. ww occurs in a trajectory of a continuous r-interval exchange trans-
formation with permutation π.

Some of the hypotheses of Theorem 1 may be weakened.

Alphabet. {1, . . . , r} can be replaced by any ordered set A = {a1 <
a2 < · · · < ar} by using a letter-to-letter morphism. Thus for a given
word w, we can restrict the alphabet to the letters occurring in w.
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Primitivity. The Burrows-Wheeler transformation can be extended
to a non-primitive word w1 · · ·wn, by ordering its n (non necessarily dif-
ferent) conjugates wi · · ·wnw1 · · ·wi−1 by non-strictly increasing lexico-
graphical order and taking the word made by their last letters. Our
Theorem 1 is still valid for non-primitive words: the proof in the first
direction does not use the primitivity, while in the reverse direction we
write w = uk, apply our proof to the primitive u, and check that u2k

occurs also in a trajectory.

Two permutations. An extension of Theorem 1 which fails is to
consider, as dynamicists do, interval exchange transformations defined
by permutations π and π′; this amounts to coding the interval ∆i by
π′i instead of i. A simple counter-example will be clearer than a long
definition: take points x1, . . . , x9 labelled 223331111 and send them to
111133322 by a (minimal) discrete 3-interval exchange transformation,
but where the points are not labelled as in Definition 3 (namely Tx1 =
x8, Tx3 = x5 etc...). Then w = 123131312 is such that ww occurs in
trajectories of T but B(w) = 323311112.

3. Building clustering words

Theorem 1 provides two different ways to build clustering words, from
infinite trajectories either of discrete (or rational) interval exchange trans-
formations or of continuous aperiodic interval exchange transformations.
For r = 2 and the permutation π1 = 2, π2 = 1, the first way gives all the
periodic balanced words, and the second way gives all infinite Sturmian
words: both ways of building clustering words on two letters are used,
explicitly or implicitly, in Jenkinson and Zamboni [8].

The use of discrete interval exchange transformations leads naturally
to the question of characterizing all minimal discrete r-interval exchange
transformations through their length vector; this has been solved by Pak
and Redlich [12] for n = 3 and π1 = 3, π2 = 2, π3 = 1: if the length vector
is (n1, n2, n3), minimality is equivalent to (n1 + n2) and (n2 + n3) being
coprime. Thus

Example 1 With the discrete interval exchange 11223333→ 333322111,
we get the perfectly clustering word 313131223.



Clustering Words and Interval Exchanges 31

The same reasoning can be extended to other permutations: for π1 =
2, π2 = 3, π3 = 1, minimality is equivalent to n1 and (n2 + n3) being
coprime; for π1 = 3, π2 = 1, π3 = 2, minimality is equivalent to n3 and
(n2 + n1) being coprime; for other permutation on these three letters, T
is never minimal.

For r ≥ 4 intervals, the question is still open. An immediate equivalent
condition for non-minimality is

∑m
i=1 swi = 0 for m < n1 + · · ·+ nr and

w1 · · ·wm a word occurring in a trajectory. It is easy to build non-minimal
examples satisfying such an equality for simple words w, for example for
r = 4 and π1 = 4, π2 = 3, π3 = 2, π4 = 1, n1 = n2 = n3 = 1 gives non-
minimal examples for any value of n4, the equality being satisfied for w =
24q if n4 = 3q, w = 14q+1 if n4 = 3q+1, w = 34q if n4 = 3q+2. Similarly,
the following example shows how we still do get clustering words, but they
may be somewhat trivial.

Example 2 The discrete interval exchange 111233444→ 444332111 sat-
isfies the above equality for w = 14; it is non-minimal and gives two
perfectly clustering words on smaller alphabets, 41 and 323.

Trajectories of interval exchange transformations may be explicitly
constructed via the self-dual induction algorithms of [5] for r = 3 and
π1 = 3, π2 = 2, π3 = 1, [6] for all r and πi = r+1−i, and the forthcoming
[4] in the most general case. Many explicit examples of ww have been built
in this way.

• For r = 3, w = Ak, w = Bk (see Proposition 2.10 in Ferenczi, Holton
and Zamboni [5]),

Example 3 13131312222 and 131312221312213122 are perfectly clus-
tering.

• For r = 4, w =M2(k), w = P3(k)M1(k) (see Lemma 4.1 and Lemma
5.1 in Ferenczi and Zamboni [7]),

Example 4 2m(3141)n32 are perfectly clustering for any m and n.

• For all r = n , w = Pk,1,1, w = Pk,n−i,i+1Pk,i+1,n−i,
w =Mk,n+1−i,i−1Mk,i−1,n+1−i (see Theorem 12 in Ferenczi [3]);
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Example 5 5252434252516152516161525161 is perfectly clustering.

For other permutations, we describe in Ferenczi [4] an algorithm gener-
alizing the one in Ferenczi and Zamboni [6], but we do not know if every in-
terval exchange transformation produces infinitely many ww. For the per-
mutation π1 = 4, π2 = 3, π3 = 1, π4 = 2, examples can be found in The-
orem 5.2 of [6], with w = P1,qnM2,qn , w = P2,qnM3,qn , w = P3,qnM1,qn ,

Example 6 4123231312412 is π-clustering.

We remark that our self-dual induction algorithms for aperiodic inter-
val exchange transformations generate families of nested clustering words
with increasing length, and thus may be more efficient in producing very
long clustering words than the more immediate algorithm using discrete
interval exchange transformations.
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Abstract

The resolution complexity of the perfect matching principle was
studied by Razborov [11], who developed a technique for proving
its lower bounds for dense graphs. We construct a a constant de-
gree bipartite graph Gn such that the resolution complexity of the
perfect matching principle for Gn is 2Ω(n), where n is the number
of vertices in Gn. This lower bound matches with the upper bound
2O(n) up to an application of a polynomial. Our result implies the
2Ω(n) lower bounds for the complete graph Kn and the complete
bipartite graph Kn,O(n) that improve the lower bounds followed
from [11]. Our results also implies the well-known exponential lower
bounds on the resolution complexity of the pigeonhole principle, the
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functional pigeonhole principle and the pigeonhole principle over a
graph.

We also prove the following corollary. For every natural number
d, for every n large enough, for every function h : {1, 2, . . . , n} →
{1, 2, . . . , d}, we construct a graph with n vertices that has the
following properties. There exists a constantD such that the degree
of the i-th vertex is at least h(i) and at most D, and it is impossible
to make all degrees equal to h(i) by removing the graph’s edges.
Moreover, any proof of this statement in the resolution proof system
has size 2Ω(n). This result implies well-known exponential lower
bounds on the Tseitin formulas as well as new results: for example,
the same property of a complete graph.

1. Introduction
The resolution proof system is one of the simplest and well-studied

proof systems. There are well known methods of proving lower and upper
bounds on the complexity of several types of formulas. However, there
are no known universal methods to determine an asymptotic resolution
complexity of a given family of formulas. We say that a family of unsatis-
fiable CNF formulas Fn is weaker than a family of unsatisfiable formulas
Hn if every clause of Hn is an implication of a constant number of clauses
of Fn. Since the resolution proof system is implication complete, the size
of any resolution proof of Hn is at least the size of the minimal resolution
proof of Fn. Thus it is interesting to prove lower bounds for for fomulas
as weak as possible.

CNF formulas PHPm
n encode the pigeonhole principle; PHPm

n states
that it is possible to put m pigeons into n holes in such a way that every
pigeon is contained in at least one hole and every hole contains at most one
pigeon. PHPm

n depends on variables pi,j for i ∈ [m] and j ∈ [n] and pi,j =
1 iff the i-th pigeon is in the j-th hole. PHPm

n is unsatisfiable iff m > n.
Haken [4] proved the lower bound 2Ω(n) on the resolution complexity of
PHPn+1

n . Raz [8] proved the lower bound 2n
ǫ

on the resolution complexity
of PHPm

n for some positive constant ǫ and arbitrary m > n. This lower

bound was simplified and improved to 2Ω(n1/3) by Razborov [9].
Urqhart [14] and Ben-Sasson, and Wigderson [2] consider formulas

G−PHPn
m that are defined by a bipartite graph G; the first part of G

corresponds to pigeons and consists of m vertices, and the second part
corresponds to holes and consists of n vertices. Every pigeon must be
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contained in one of adjacent holes. Formulas G−PHPm
n may be obtained

from PHPm
n by substituting variables which do not have corresponding

edges in G with zeroes. The paper [2] presents the lower bound 2Ω(n) for
formulas G−PHPm

n where m = O(n) and G is a bipartite constant degree
expander.

Razborov [10] considers a so called functional pigeonhole principle
FPHPm

n that is a weakening of PHPm
n ; the formula FPHPm

n is the con-
junction of PHPm

n and additional conditions stating that every pigeon is

contained in at most one hole. Razborov proved a lower bound 2
Ω
(

n
(log m)2

)

for FPHPm
n that implies a lower bound 2Ω(n

1/3) depending only on n.
Let for every graph G a formula PMPG (from the Perfect Matching

Principle) encode that G has a perfect matching. Variables of PMPG

correspond to edges, and for every vertex of G exactly one incident edge
has value 1. Razborov [11] proved that if G has no perfect matchings,

then the resolution complexity of PMPG is at least 2
δ(G)

log2 n , where δ(G) is
the minimal degree of the graph and n is the number of vertices.

Alekhnovich [1] and Dantchev and Riis [3] consider the graphs of the
chessboard 2n×2n with two opposite corners removed. The perfect match-
ing principle for such graphs is equivalent to the possibility to tile such
chessboards with domino. The strongest lower bound 2Ω(n) was proved in
[3] and this lower bound is polynomially connected with the upper bound
2O(n). We note that the number of variables is Θ(n2).

Our results For all n and all m ∈ [n + 1, O(n)] we give an example
of a bipartite graph Gm,n with m and n vertices in its parts such that
all degrees are bounded by a constant and the resolution complexity of
PMPGm,n is 2Ω(n). The number of variables in such formulas is O(n),
therefore the lower bound matches (up to an application of a polynomial)
the trivial upper bound 2O(n) that holds for every formula with O(n)
variables. This is the first lower bound for perfect matching principle that
is exponential in the number of variables. In particular, our results imply
that the resolution complexity of PMPKm,n is 2Ω(n), where Km,n is the
complete bipartite graph and m = O(n). And this lower bound improves

the lower bound 2Ω(n/ log2 n) that follows from [11] and matches (up to
a polynomial application) the upper bound n2n that follows from the
upper bound for PHPn+1

n [12]. Our result implies the lower bound 2Ω(n)
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on the resolution complexity of PMPKn , where Kn is a complete graph

on n vertices, and it is also better than the lower bound 2Ω(n/ log2 n) that
follows from [11]. We note that PMPGm,n is weaker than Gm,n−PHPm

n ,
PHPm

n and FPHPm
n , therefore our lower bound implies the same lower

bound for Gm,n − PHPm
n , PHPm

n and FPHPm
n . To put it more precisely,

we we prove the following theorem:

Theorem 2 Let G be a bipartite graph with parts X and Y such that the
folowing holds:

1. G is a (r, c)-boundary expander; i.e. for all A ⊆ X, if |A| ≤ r then
|δ(A)| ≥ c|A|, where δ(A) is the set of all vertices in Y that are
connected with exactly one vertex in A;

2. There is a matching in G that covers all vertices from Y .

Then the width of all resolution proofs of PMPG is at least cr/2. If addi-
tionally degrees of all vertices are at most D, then (using [2] we get that)

the size of any resolution proof of PHPG is at least 2
Ω

(

(cr/2−D)2

n

)

, where
n is the number of edges in G.

The condition that G has a matching covering all vertices from Y
can not be removed for free since for every (r, c)-boundary expander it is
possible to add one vertex to X and ⌈c⌉ vertices to Y such that the new
vertex in X is connected with all new vertices in Y . The resulting graph
is also (r, c)-boundary expander but the resulting formula will contain
unsatisfiable subformula that depends on ⌈c⌉ variables, hence it can be
refuted with width ⌈c⌉. We do not know whether it is possible to replace
the second condition in the theorem by a weaker condition.

To estimate the width we use the method introduced by Ben-Sasson
and Wigderson in [2]. However, we use a non-standard notion of a seman-
tic implication and a non-standard measure on the set of clauses.

An example of a graph that suits the conditions of Theorem 2 can
be constructed from every lossless expander by removing vertices of high
degrees as it was shown in [6], and by adding a matching that covers all
vertices from Y . For example, we can use the explicit construction of
lossless expanders from [7] (or the randomized construction [5]).

Theorem 2 implies a more general theorem:
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Theorem 3 For graph G(V,E) and function h : V → {1, 2, . . . , d} we

define a formula Ψ
(h)
G , that code that G has a subgraph H such that for

all v in H the degree of v equals h(v). For any d ∈ N, there exists D ∈ N
that for all n large enough and every function h : V → {1, 2, . . . , d}, where
|V | = n, there exists graph G(V,E) with degrees of vertices at most D such

that the formula Ψ
(h)
G is unsatisfiable and the size of any resolution proof

of Ψ
(h)
G is at least 2Ω(n).

If h maps V to {1, 2}, then Ψ
(h)
G is weaker than Tseitin formulas based

on graph G. Thus our result implies the lower bound 2Ω(n) on the reso-
lution complexity of Tseitin formulas that was proved in [13].

2. Preliminaries

We consider simple graphs without loops and multiple edges. The
graph G is called bipartite if its vertices can be divided into two disjoint
parts X and Y in such a way that any edge is incident to one vertex from
X and one vertex from Y . We denote G(X,Y,E) a bipartite graph with
parts X and Y and set of edges E. A matching in a graph G(V,E) is such
a set of edges E′ ⊆ E that any vertex v ∈ V has at most one incident
edge from E′. A matching E′ covers a vertex v if there exists e ∈ E′ that
is incident to v. A perfect matching is a matching that covers all vertices
of G. For a bipartite graph G(X,Y,E) and a set A ⊆ X we denote Γ(A)
a set of all neighbors of vertices from A.

Lemma 1 (Hall) Consider such a bipartite graph G(X,Y,E) that for
some A ⊆ X for all B ⊆ A the following inequality holds: Γ(B) ≥ |B|.
Then there is a matching that covers all vertices from A.

For a CNF formula ϕ a proof of its unsatisfiability in the resolution
proof system is a sequence of clauses with the following properties: the
last clause is an empty clause (we denote it by �); any other clause is
either a clause of initial formula ϕ or can be obtained from previous ones
by the resolution rule. The resolution rule admits to infer a clause (B∨C)
from clauses (x ∨ B) and ¬x ∨ C. The size of a resolutional proof is the
number of clauses in it.

In [2] E. Ben-Sasson and A. Wigderson introduced a notion of formula
width. A width of a clause is a number of literals contained it it. For a
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k-CNF formula ϕ a width of ϕ is a maximum width of clauses of ϕ. A
width of a resolution proof is a width of the largest clause used in it.

Theorem 4 ([2]) For any k-CNF unsatisfiable formula ϕ the size of res-

olution proof is at least 2
Ω

(

(w−k)2

n

)

, where w is a minimal width of a
resolutional proof and n is a number of variables used in ϕ.

Lemma 2 Let φ be a formula that is obtained from unsatisfiable formula
ψ by a substitution of several variables. Then φ is unsatisfiable and the
size of the minimal resolution proof of ψ is at least the size of the minimal
resolution proof of φ.

3. Subgraph extraction

3.1. Existence of a perfect matching

For an undirected graph G(V,E) we construct a formula PMPG that
encodes that G has a perfect matching. We assign a binary variable xe
for all e ∈ E . PMPG is the conjunction of the following conditions: for
all v ∈ V exactly one edge that incident to v has value 1. Such conditions
can be written as the conjunction of the statement that at least one edge
takes value 1:

∨
(v,u)∈E x(v,u) and the statement that for any pair of edges

e1, e2 incident to v at most one of them takes value 1: ¬xe1 ∨ ¬xe2 .
Note that if degrees of all vertices are at most D, then PMPG is a

D-CNF formula.
In this section we prove the following theorem:

Theorem 5 There exists a constant D such that for all C that for all
n large enough and for all m ∈ [n + 1, Cn] it is possible to construct in
polynomial in n time such bipartite graph G(V,E) with m and n vertices in
parts that all degrees are at most D and the formula PMPG is unsatisfiable
and the size of any resolution proof of PMPG is at least 2Ω(n).

Definition 4 A bipartite graph G(X,Y,E) is (r, c)-boundary expander
if for any set A ⊆ X such that |A| ≤ r the following inequality holds
|δ(A)| ≥ c|A|, where δ(A) denotes the set of all such vertices in Y that
are connected with the set A by the unique edge.



Resolution complexity of Perfect Mathcing principles 40

Lemma 3 Let bipartite graph G(X,Y,E) have two matchings, the first
one covers all vertices from Y and the second covers all vertices from A ⊆
X. Then there exists a matching in G that covers A and Y simultaneously.

Proof. Let L denote the matching that covers all vertices from the set A
and let F be a matching that covers all vertices from Y . We prove that if
F does not cover all vertices from A, then one may construct a matching
F ′ that covers more vertices of A than F and also covers all vertices from
Y . Therefore there is such a matching that covers A and Y .

Consider some vertex v1 ∈ A that is not covered by F and such path
v1, u1, v2, u2, . . . , uk−1, vk that (vi, ui) ∈ L, (ui, vi+1) ∈ F and v1, v2, . . . ,
vk−1 ∈ A and vk /∈ A.

For any fixed v1 ∈ A such a path can be constructed deterministically:
starting at vertex v1 the edges of the path belong to alternating matchings
L and F . For every vertex from X at most one of outgoing edges belongs
to L. For every vertex from Y exactly one of outgoing edges belongs to
F . The path can’t become a cycle because v1 has no incident edges from
F , therefore the constructed path will lead to some vertex vk /∈ A.

Let matching F ′ be constructed from F by removing all edges (vi, vi+1)
and adding edges (ui, vi) for 1 ≤ i < k. Now F ′ covers all Y and covers
one additional vertex of A in comparison with F . �

Lemma 4 Let G(X,Y,E) be a bipartite (r, d, c)-boundary expander with
c > 2 and |X | > |Y |. Let G have a matching that covers all vertices from
the part Y . Then the formula PMPH is unsatisfiable and the width of its
resolution refutation is at least cr/2.

Proof. Parts X and Y have different number of vertices, hence there are
no perfect matchings in G and PMPG is unsatisfiable.

We call an assignment to variables of PMPG proper if for every vertex
v at most one edge incident to v has value 1. For some subset S ⊆ V and
for a clause C we say that S properly implies C if any proper assignment
that satisfies all constraints in vertices from S, also satisfies C. We denote
it as S ⊢ C.

Now we define a measure on clauses from a resolution refutation of
PMPG: µ(C) = min{|S ∩X | | S ⊢ C}.

The measure µ has the following properties:
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1) The measure of any clause from PMPG equals 0 or 1.
2) Semiadditivity: µ(C) ≤ µ(C1)+µ(C2), if C is obtained by applying

of resolution rule to C1 and C2.
Let S1 ⊢ C1, |S1 ∩ X | = µ(C1) and S2 ⊢ C2 , |S2 ∩ X | = µ(C2).

Hence S1 ∪ S2 ⊢ C1 and S1 ∪ S2 ⊢ C2, so S1 ∪ S2 ⊢ C, therefore µ(C) ≤
|S1 ∩X |+ |S2 ∩X | = µ(C1) + µ(C2).

3) The measure of the empty clause � is more than r.
Let µ(�) ≤ r, then there is such S ⊆ V that S ⊢ � and |S ∩X | ≤ r.

For all A ⊆ S ∩X the following holds |Γ(A)| ≥ |δ(A)| ≥ (c− 1)|A| ≥ |A|,
and Hall’s Lemma (Lemma 1) implies that there is a matching in H that
covers all S ∩ X . By construction of H it has a matching that covers
all vertices of Y , therefore Lemma 3 implies that there exists a matching
that covers S ∩X and Y , hence it covers S. This matching corresponds
to an assignment that satisfies all constraints for vertices from S, but it
is impossible to satisfy the empty clause and we get a contradiction with
the fact that µ(�) ≤ r.

The semiadditivity of the measure implies that any resolution proof of
the formula PMPG contains a clause C with the measure in the interval
r
2 ≤ µ(C) ≤ r. Let S ⊢ C and |S ∩X | = µ(C). For the sake of brevity let
A = S ∩ X . Since G is a (r, c)-boundary expander, δ(A) ≥ c|A|. Let F
denote the set of edges between A and δ(A). Every vertex from δ(A) has
exactly one incident edge leading to A, therefore |F | = |δ(A)|. Consider
one particular edge f ∈ F , let f = (u, v), where u ∈ A. Since |(S \ {u})∩
X | < |S ∩ X |, clause C is not properly implied from the set S \ {u}, i.
e. there exists a proper assignment σ that satisfies all restrictions in the
vertices S \ {u}, but refutes the clause C. Such assignment σ can not
satisfy the constraint in the vertex u, since otherwise σ would satisfy S
and therefore satisfy C. Since σ is a proper assignment, σ assigns value 0
to all edges that are incident with u .

We consider two cases: 1) σ refutes a constraint in the vertex v; 2) σ
satisfies a constraint in the vertex v.

In the first case we consider another assignment σ′ that differs from
σ in the value of the edge f . Note that σ′ is proper and satisfies all
constraints from S, so it satisfies C. Since σ does not satisfy C, the
variable f is contained in C.

In the second case σ satisfies v. There is an edge e incident to v such
that σ(e) = 1. The vertex v is a boundary vertex for A, therefore the
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other endpoint of e does not belong to A. Consider an assignment σ′′

that is obtained from σ by changing the values of f and e, σ′′ is proper
and it satisfies all constraints from S, and hence it satisfies C. Thus C
contains either e or f . Thus for all v ∈ δ(A) at least one of the edges
incident to v occurs in C. Therefore the size of the clause C is at least
|δ(A)| ≥ c|A| ≥ cr/2.

�

We say that a graph is explicit if it can be constructed in time poly-
nomial in the number of its vertices.

Lemma 5 ([6], lemma 6.2) For all d large enough and for all m there
exists explicit construction of (r, 0.5d)-boundary expander G(X,Y,E) with
|X | = |Y | = m, r = Ω(m) such that degrees of all vertices from X are at
most d and degrees of all vertices from Y are at most d2.

Corollary 1 For all d large enough and for all C and all n and m ∈
[n+1, Cn] there is an explicit construction of (r, 0.4d)-boundary expander
G(X,Y,E) with |X | = m, |Y | = n and r = Ω(n) such that degrees of all
vertices from X are at most d and degrees of all vertices from Y are at
most d2.

Proof. The required graph can be obtained from Lemma 5 by deleting
several vertices from the part Y . �

Proof. [Proof of Theorem 5] Consider some d > 5 that satisfies Corollary 1;
consider (r, 0.4d)-boundary expander H from the Corollary 1 that has m
and n vertices in parts. Let graph G be obtained from H by adding any
matching that covers all vertices from the part Y . Graph G is a (r, c− 1)-
boundary expander, since the addition of a matching increases degrees of
vertices in X at most by 1 and for every A ⊆ X the size of δ(A) decreases
by at most |A|.

Lemma 4 implies that the width of any resolution proof of PMPG is
at least Ω(n). Theorem 4 implies that the size of any resolution proof of
PMPG is at least 2Ω(n). �

4. Subgraph extraction

Let G(V,E) be an undirected graph and h be a function V → N such
that for every vertex v ∈ V , h(v) is at most the degree of v. We consider
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formula Ψ
(h)
G ; its variables corresponds to edges ofG. Ψ

(h)
G is a conjunction

of the following statements: for every v ∈ V exactly h(v) edges that are

incident to v have value 1. Formula PMPG is a particular case of Ψ
(h)
G for

h ≡ 1.

Lemma 6 For all d ∈ N and for all n large enough for any set V of
cardinality n and any function h : V → {1, 2, . . . , d} there exists explicit
construction of a graph G(V,E) with the following properties: 1)V consists
of two disjoint sets U and T with no edges between them; 2)The degree of
every vertex u ∈ U equals h(u) − 1 and the degree of every vertex v ∈ T
equals h(v); 3) |U | ≥ n

2 − 2d2.

Proof. Let n ≥ 4d2 and the vertices v1, v2, . . . , vn be arranged in non-
decreasing order of h(vi). Let k be the largest number that satisfies the

inequality
∑k

i=1(h(vi) − 1) <
∑n

i=k+1 h(vi) − d(d − 1). We denote U =
{v1, v2, . . . , vk} and T = V \U . Obviously, |U | = k ≥ n/2−d(d−1). Now
we construct a graph G based on the set of vertices V . We start with an
empty graph and will add edges one by one. For every vertex v ∈ T we
call co-degree of v the difference between h(v) and the current degree of v.
From every u ∈ U we add h(u)−1 edges to G that lead from u to distinct
vertices of V \ U . Doing so, we maintain degrees of all v ∈ T under the
value h(v). This always can be done since by the construction of U the
total co-degree of all vertices from T is greater than d(d − 1), hence for
all big enough n there exists at least d vertices with co-degree at least 1.

While the number of vertices in T with positive co-degree is greater
than d, we will choose one of those vertices w ∈ T and add to graph
exactly co-degree of w edges that connect w with other vertices from T .
Finally we have that T contains at most d vertices with co-degrees at most
d. Now we connect them with distinct vertices from the set U , remove
that vertices from U and add them to T . It is possible that in the last
step some vertex v ∈ T is already connected with several vertices from U ,
in that case we should connect v with new vertices. By this operation we
deleted at most d2 vertices from U and therefore |U | ≥ n/2− 2d2. �

Theorem 6 For all d ∈ N there is such D ∈ N that for all n large enough
and for any function h : V → {1, 2, . . . , d}, where V is a set of cardinality
n, there exists such explicit graph G(V,E) with maximum degree at most
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D, that formula Ψ
(h)
G is unsatisfiable and the size of any resolution proof

for Ψ
(h)
G is at least 2Ω(n).

Proof. By Lemma 6 we construct a graph G1(V,E1) and a set U ⊆ V of
size at least n

2 − 2d2 such that for all v ∈ U , the degree of v is equal to
h(v) − 1 and for all v ∈ V \ U the degree of v is equal to h(v). Consider
graph G(U,E2) from Theorem 5 with U as the set of its vertices. Define a
new graph G(V,E), where the set of edges E equals E1 ∪E2. Recall that
edges from the set E2 connect vertices of the set U and edges from E1 do
not connect pairs of vertices from U (that follows from the construction
of the graph in Lemma 6 ).

For every vertex v ∈ V \ U its degree equals h(v). Therefore if Ψ
(h)
G

is satisfiable, then in any satisfying assignment of Ψ
(h)
G all edges that are

incident to vertices V \ U must have the value 1. After substitution the

value 1 for all these variables Ψ
(h)
G becomes equal to the formula PMPG2

that is unsatisfiable because of Theorem 5.
Formula PMPG2 is obtained from Ψ

(h)
G by substitution of several vari-

ables, thus Lemma 2 implies that the size of any resolution proof of Ψ
(h)
G

is at least the size of the minimal proof for PMPG, that is at least 2
Ω(n)

by Theorem 5. �

4.1. Colloraries

Tseitin formulas. A Tseitin formula T
(f)
G can be constructed by an

arbitrary graph G(V,E) and a function f : V → {0, 1}; variables of T (f)
G

corresponds to edges of G. The formula T
(f)
G is a conjunction of the

following conditions: for every vertex v we write down a CNF condition
that encode that the parity of the number of edges incident to v that have
value 1 is the same as the parity of f(v).

Based on the function f : V → {0, 1} we define a function h : V →
{1, 2} by the following way: h(v) = 2− f(v). In other words if f(v) = 1,
then h(v) = 1, and if f(v) = 0, then h(v) = 2. By Theorem 6 there exists
such number D, that for all n large enough it is possible to construct
graph G with n vertices of degree at most D such that the size of any
resolution proof of the formula Ψh

G is at least 2Ω(n).
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Note that every condition corresponding to a vertex of the formula T
(h)
G

is implied from the condition corresponding to the formula Ψh
G. Since the

resolution proof system is implication complete, every condition of T
(h)
G

may be derived from a condition of Ψh
G by derivation of size at most 2D

Hence all clauses of the Tseitin formula may be obtained from clauses of
formula Ψh

G by the derivation of size O(n). Thus the size of any resolution

proof of T
(f)
G is at least 2Ω(n). This lower bound was proved in the paper

[13].

Complete graph. Let Kn be a complete graph with n vertices and

h : V → {0, 1, . . . , d}, where d is a some constant. Let formula Ψ
(h)
Kn

be
unsatisfiable. By Theorem 6 there existsD such that for all n large enough
there exists an explicit graph G with n vertices of degree at most D that
the size of any resolution proof of Ψh

G is at least 2Ω(n). The graph G can

be obtained fromKn by removing of several edges, hence the formula Ψ
(h)
G

can be obtained from Ψ
(h)
Kn

by the substitution zeros to edges that do not
present in G. Therefore by Lemma 2 the size of the resolution proof of

Ψ
(h)
Kn

is at least 2Ω(n).
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We consider the two-sided mate choice model with age dependent pay-
offs (see Alpern, Katrantzi and Ramsey (2010) [3]). The problem is fol-
lowing. There are two groups of individuals: males and females. The
individuals want to form a long-term relationship with a member of the
other group, i.e. to form a couple. In the model males and females can
form a couple during m and n periods, respectively, m ≥ n. Each group
has steady state distribution for the age of individuals. We consider asym-
metric case in which the total number of unmated males is greater than
the total number of unmated females.

We present a discrete time game in which the individuals from different
groups are matching randomly in each period. If they accept each other,
they form a couple and leave the game, otherwise they go into the next
period unmated and older. It is assumed that individuals of both sexes
enter the game at age 1 and stay until they are mated or males (females)
pass the age m (n). The initial ratio of age 1 males to age 1 females is

∗The work is supported by Russian Fund for Basic Research (project 13-01-91158-
ΓΦEH a, project 13-01-00033-a) and the Division of Mathematical Sciences of RAS
(the program ”Algebraic and combinatorial methods of mathematical cybernetics and
new information system”).
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given. The payoff of mated player is the number of future joint periods
with selected partner. Payoff of a male age i and a female age j if they
accept each other is equal to min{m− i+ 1, n− j + 1}. The aim of each
player is to maximize his/her expected payoff. In each period players use
threshold strategies: to accept exactly those partners who give them at
least the same payoff as the expected payoff from the next period.

Denote ai — the number of unmated males of age i relative to the
number of females of age 1 and bj — the number of unmated females of
age j relative to the number of females of age 1 (b1 = 1). The vectors
of the relative numbers of unmated males and females of each age a =
(a1, ..., am), b = (b1, ..., bn) remain constant over time. Denote the ratio
of the rates at which males and females enter the adult population by
R, R = a1

b1
= a1. The total groups of unmated males and females are

A =
m∑
i=1

ai, B =
n∑

i=1

bj . Denote the total ratio A
B by r and assume that

r > 1.
Denote Ui, i = 1, ...,m — the expected payoff of male of age i and

Vj , j = 1, ..., n — the expected payoff of female of age j. Players use
the threshold strategies F = [f1, ..., fm] for males and G = [g1, ..., gn] for
females, where fi = k, k = 1, ..., n — to accept a female of age 1, ..., k,
gj = l, l = 1, ...,m — to accept a male of age 1, ..., l:

i accepts j if min{m− i + 1, n− j + 1} ≥ Ui+1;
j accepts i if min{m− i+ 1, n− j + 1} ≥ Vj+1.

The equilibrium age distributions are equal:

ai+1 = ai

(
1− ∑

i↔j

bj
A

)
, i = 1, ...,m− 1;

bj+1 = bj

(
1− ∑

i↔j

ai

A

)
, j = 1, ..., n− 1.

In the literature such problems are called also marriage problems or job
search problems. We use here the terminology of ”mate choice problem”.
In papers [2, 1, 7] the mutual mate choice problems with homotypic and
common preferences are investigated. In [4] a continuous time model with
age preferences is considered. Other two-sided mate choice models were
considered in papers [5, 6, 8]. Alpern, Katrantzi and Ramsey [3] derive
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properties of equilibrium threshold strategies and analyse the model for
small m and n. The case n = 2 was considered in paper [9]. In this paper
using dynamic programming method we derive the equilibrium threshold
strategies and investigate players’ payoffs for different values n and m.
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Definition 1 1) A graph is called k-connected if v(G) ≥ k + 1 and G
remains connected after deleting any its k − 1 vertices.

2) A k-connected graph is called minimal, if it becomes not k-connected
after deleting any edge.

Clearly, all vertices of a k-connected graph have degree at least k. We
denote by vk(G) the number of vertices of degree k of a graph G.

In 1967 minimal biconnected graphs were considered in the papers [1]
and [2]. It can be deduced from the results of these papers that

v2(G) ≥
v(G) + 4

3

for a minimal biconnected graph G.
In 1979 W.Mader [5, 5] has proved a very strong result that generalize

for arbitrary k the one written above:

vk(G) ≥
(k − 1)v(G) + 2k

2k − 1
(1)

for a minimal k-connected graph G. This bound is tight: there are infinite
series of graphs for which the inequality (1) turns to equality.
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Definition 2 Let k ≥ 2 and T be a tree with ∆(T ) ≤ k + 1. The graph
Gk,T is constructed from k disjoint copies T1, . . . , Tk of the tree T . For
any vertex a ∈ V (T ) we denote by ai the correspondent vertex of the copy
Ti. If dG(a) = j then we add k + 1 − j new vertices of degree k that are
adjacent to {a1, . . . , ak}.

b

b

b

b

b

b

b

b

b

b

b
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b
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b

b

b
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b

b

b
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b b
b b

b b b b

T G2, T

Figure 3: A tree T and correspondent extremal minimal biconnected
graph G2,T .

Clearly, if v(T ) = n then v(Gk,T ) = (2k− 1)n+2. It is not difficult to
verify that Gk,T is a minimal k-connected graph. The inequality (mad) is
attained for Gk,T . A tree T with ∆(T ) = 3 and the graph G2,T are shown
on the picture. The next theorem shows us that the inequality (mad) is
attained only for minimal biconnected graphs of such type.

Theorem 1 (D.Karpov, 2014.) Any minimal k-connected graph G with

vk(G) =
(k−1)v(G)+2k

2k−1 is a graph Gk,T for some tree T with ∆(T ) ≤ k+1.

Definition 3 A minimal k-connected graph G is called extremal if

vk(G) =

⌈
(k − 1)v(G) + 2k

2k − 1

⌉
. (2)

Denote by GMk(n) the set of all extremal minimal k-connected graphs on
n vertices.

The theorem 1 shows us that GMk((2k − 1)n + 2) consists of graphs
of type Gk,T for all trees T with ∆(T ) ≤ k + 1 and v(T ) = n.

In 1982 Oxley [7] presented an algorithm of constructing all extremal
biconnected graphs. These graphs can be obtained f by several operations
of substituting a vertex of degree two by a graph K2,2 (joint by two
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edges to two vertices of the neighborhood of the vertex that have been
substituted) from one of the initial graphs: K3, three graphs of more
complicated structure and two infinite series of graphs. In [11] the author
has described extremal biconnected graphs in terms of the graphs G2,T .

The situation is quite different for k ≥ 3. In 1979 W.Mader has shown
that GMk((2k− 1)n+ 4) = ∅ for k ≥ 3 and positive integer n. Moreover,
Mader has conjectured that

GMk((2k− 1)n + 2ℓ) = ∅

for 2 ≤ ℓ ≤ k − 1 and any positive integer n. Mader has shown that
GMk((2k − 1)n + t) 6= ∅ for all other positive integer t < 2k − 1 and
n ≥ 1.

Why the case of v(G) = (2k− 1)n+ 2ℓ can be such an exclusion? Let
f(G) = (2k− 1)vk(G)− (k− 1)v(G). It is easy to see that for an extremal
minimal k-connected graph G we have that f(G) is equal to the residue
of −(k − 1)v(G) modulo 2k − 1. For G ∈ GMk((2k − 1)n + 2ℓ) that is
f(G) = ℓ − 1. Thus the Mader’s conjecture means that if f(G) > 0 for a
k-connected graph then f(G) ≥ k − 1.

We prove a particular case of Mader’s conjecture.

Theorem 2 (D.Karpov) Let k, n, ℓ be positive integers such that k ≥ 3,

and 2 ≤ ℓ < 4k+7+4
√
k2−k−2

9 . Let G be a mininal k-connected graph with
v(G) = (2k − 1)n+ 2ℓ. Then

vk(G) ≥
⌈
(k − 1)v(G) + 2k

2k − 1

⌉
+ 1. (3)

One can easily verify that 4k+7+4
√
k2−k−2

9 ≥ 8k+3
9 for k ≥ 3. That is

we have proved Mader’s conjecture for ℓ ≤ 8k+3
9 .
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Let a subcritical or critical homogeneous Galton–Watson process start
with N particles and the number of offspring of each particle have a
Poisson distribution with parameter λ. The set of this process realizations
is infinite and consists of rooted trees with a finite number of vertices.
The branching process induces probability distribution on this set. Such
random forests are known as Galton–Watson forests. Let µr denote the
number of trees of a giving size in the Galton–Watson forest. As N →∞
for a subset of trajectories with a known identical number of vertices limit
distributions of µr were obtained in [2] using a generalized allocation
scheme [1]. We derived similar results for a subset of trajectories such
that the number of vertices does not exceed n with different behavior of
parameters λ and n. In particular, the following assertion is true.

Theorem. Let N →∞ and one of the following conditions be fulfilled:

1) r →∞, N(1− λ)→ γ, 0 6 γ <∞, n/N2 > C > 0;

2) r → ∞, λ > λ1 > 0, N(1 − λ) → ∞,
√
1− λ (N − n(1− λ)) 6

C
√
N , C > 0;

3) r > 3, λ→ 0, Nλ3 →∞, N − n(1− λ) 6 C
√
λN , C > 0;

4) r = 2, λ→ 0, Nλ6 →∞, (n(1− λ)−N) /
√
λN →∞.

∗The work was supported by the Russian Foundation for Basic Research, grant
13-01-00009.

c©E.V. Khvorostyanskaya, 2014



On the Number of Trees of a Giving Size 56

Then

P {µr = k} = (Npr)
k

k!
e−Npr(1 + o(1))

uniformly on (k −Npr) /
√
Npr in any fixed interval.

For the conditional random forests in question the proved theorems
generalize the results obtained in [3].
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Abstract

In this research, we demonstrate how to apply the probabilistic
approach to investigating the asymptotic behaviour of the number
of partitions of an integer.

Any representation of a positive integer in the form of a sum of posi-
tive integers (parts) is referred to as a partition of the number, which
is primarily of combinatorial and number theoretical nature. Questions
concerning the partitions have played an important part in mathematics.

Gian-Carlo Rota wrote in his preface to the monograph [1] that the
theory of partitions is one of the very few branches of mathematics that
can be appreciated by anyone who is endowed with little more than a
lively interest in the subject. Its applications are found wherever discrete
objects are to be counted or classified, whether in the molecular and the
atomic studies of matter, in the theory of numbers, or in combinatorial
problems from all sources.

Partitions are investigated in combinatorics and in the theory of num-
bers; classical combinatorial problems concern counting partitions, and in
the theory of numbers, problems on additive representations of numbers
are being solved under arithmetical constraints imposed on the parts (for
example, the well-known Goldbach and Waring problems). Serious diffi-
culties may arise while solving problems on partitions, though; so a great
body of special methods in the theory of partitions have been elaborated

c© A.V. Kolchin, 2014
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(see, e.g., [1]). Historically, the first method which has since then become
the most common in the whole theory of partitions is the method of gen-
erating functions. It was developed by Euler and has found application
both in the theory of numbers and in combinatorics; it has been evolved
into very delicate but universal tools utilising the Dirichlet generating
functions, the trigonometric sums, the characteristic functions.

Euler indeed laid the foundations of the theory of partitions. Many of
the other great mathematicians—Cayley, Gauss, Hardy, Jacobi, Lagrange,
Legendre, Littlewood, Rademacher, Ramanujan, Schur, and Sylvester—
have contributed to the development of the theory.

If one considers the applications of partitions in various branches of
mathematics, one is struck by the interplay of combinatorial and asymp-
totic methods.

We consider the problem on the number of partitions of a positive
integer n into s positive integer parts which do not exceed a given integer
r (those partitions which differ in the order of parts only are counted as
one). Let Cn,s,r stand for the number of these partitions. A series of exact
and asymptotic formulas have been known for this number (see, e.g., [1]).

It turns out that there is an easy way to arrive at a compact asymptotic
expression for the number of these partitions with the use of probabilistic
reasoning (see, e.g., [2, 3]). It is not difficult to see, indeed, that the
partition of a number is described by the classical scheme of equiprobable
allocation of n particles into s cells under the condition that each cell
contains not more than r particles.

Let ξ1, ξ2, . . . , ξs be independent random variables which take values
1, 2, . . . , r with equal probabilities, which can be considered as the contents
of the corresponding cells in the above allocation scheme. It is easily seen
that

P{ξ1 + ξ2 + · · ·+ ξs = n} =
∑

k1+k2+···+ks=n
k1,k2,...,ks≤r

P{ξ1 = k1, ξ2 = k2, . . . , ξs = ks}

= Cn,s,r
1

rs
.

(1)
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In addition, the equalities

Eξ1 =
r + 1

2
= m,

Var ξ1 =
r2 − 1

12
= σ2

hold true. So, in order to investigate the asymptotic behaviour of Cn,s,r

one is able to utilise the well-developed apparatus of local limit theorems
of probability theory (see, e.g., [4, 5, 6]).

First, let us analyse the behaviour of the number of partitions in the
so-called ‘central’ domain of variation of the parameters.

It is obvious that

P{ξ1 + ξ2 + · · ·+ ξs = n} = P

{
ξ1 + ξ2 + · · ·+ ξs − sm

σ
=
n− sm
σ

}
.

Let

x =
n− sm
σ

.

Using the above relations for the mathematical expectation m and the
variance σ2, we find that

x =
2n− s(r + 1)√

(r2 − 1)/3
.

For the sake of simplicity, let r be fixed. From relation (1), with the
use of the local convergence to the standard normal law we see that for
fixed r, while the parameters n and s tend to infinity in such a way that
the ratio of n to s lies in some finite interval, the relation

1

rs
Cn,s,r =

1√
2π
e−x2/2(1 + o(1))

holds true uniformly with respect to all x in an arbitrary fixed finite
interval. Thus, the following assertion is valid.

Theorem Let r be a fixed integer. If the parameters n and s tend to
infinity in such a manner that the ratio of n to s remains inside some
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finite interval, then the number Cn,s,r of partitions of a positive integer n
into s positive integer parts not exceeding r obeys the equality

Cn,s,r =
rs√
2π
e−x2/2(1 + o(1)),

which holds true uniformly in all

x =
2n− s(r + 1)√

(r2 − 1)/3

which fall into an arbitrary fixed finite interval.

The author believes that the analysis of behaviour of this number of
partitions in other domains of variation of the parameters n, s, r certainly
deserves a separate presentation.

In conclusion, it is worth noticing that the reverse approach which
consists of studying asymptotic properties of characteristics of a classical
allocation scheme with the use of apparatus of the theory of partitions of
a number seems to be very fruitful as well.
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Abstract

In the framework of a scheme of allocating distinguishable par-
ticles into indistinguishable cells, upon defining an easy-to-use rep-
resentation form of an outcome, we explicitly enumerate the out-
comes; solve the direct and reverse problems of enumeration of the
outcomes; find the probability distribution for the outcomes; give a
recurrence relation for the number of outcomes of the scheme and
their probabilities under the condition that the number of non-
empty cells is fixed; derive an explicit formula for the total num-
ber of the outcomes of the scheme; analyse the distribution of the
statistics of empty cells; present a numerical method to find their
number; and suggest various methods to simulate the outcomes of
the scheme which allow us to carry out an approximate calculation
of the number of outcomes of the scheme.

We discuss combinatorial and probabilistic problems in the framework
of the scheme of allocating distinguishable particles into indistinguishable
cells and similar schemes with certain constraints imposed on the distri-
bution of particles.

By the combinatorial problems are primarily meant those where one
has to find the number of outcomes in the basic scheme under considera-
tion and schemes with constraints, as well as to give a visual representation
of all outcomes in an effort to simplify the analysis.
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By the probabilistic problems we mean to find probability distributions
of outcomes or groups of outcomes.

The combinatorial problems are solved in three forms: to find exact
analytical formulas for the characteristics of the scheme we are interested
in; to construct numerical (algorithmic) methods to evaluate them under
given parameters of the scheme; to suggest approximate methods to solve
combinatorial problems by means of stochastic simulation.

The basis of the attempts of exact (analytical and numerical alike)
calculation of the number of outcomes of a scheme is the visual represen-
tation (enumeration) of the outcomes; we suggest two convenient forms
to represent the outcomes of the scheme keeping in mind that they are
determined by the contents of the cells only with no account for their
arrangement because the cells are indistinguishable.

In order to enumerate the outcomes of the scheme we construct a ran-
dom process of successive one-by-one equiprobable allocation of r particles
to n cells in the context of the scheme under consideration. The step of
the process consists of allocating the next particle. Upon introducing a
certain numeration of the outcomes at each allocation step, at the last
rth step we enumerate all outcomes of the scheme. We thus establish a
one-to-one correspondence between the outcomes and the labels they get
assigned under our numeration; so we obtain an explicit formula for the
number of outcomes of the scheme and are able to implement their fast
simulation. In order to analyse this random process we draw its state
transition graph.

The problem to find the probability distribution of the outcomes of the
scheme is numerically solved for any fixed values of the scheme parameters
by enumerating all outcomes with the use of the above graph.

We suggest three ways to simulate the outcomes of the scheme:

1. we discard the excessive outcomes while simulating as in [1] the
more general scheme of allocation of distinguishable particles into
distinguishable cells (with repetitions allowed);

2. with the help of the labelling method described in [1], knowing the
probability distribution of the outcomes we randomly draw the out-
come label and use the correspondence between the outcomes and
their labels;
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3. we directly simulate the outcomes by drawing at random the mini-
mum label assigned to the elements in a cell.

Step-by-step algorithms can be given for each of these ways.
The procedure of approximate calculation of the number of outcomes

S2 of the scheme is based on rejecting the excessive outcomes in the more
general scheme with S1 outcomes for which a fast and efficient simulation
algorithm is known. As a more general scheme we suggest the scheme
of allocation of r distinguishable particles to n distinguishable cells with
repetitions allowed, where any cell can hold all particles. It is known that
the number of outcomes of this scheme is S1 = nr, while a quite good
algorithm to simulate its outcomes is given in [1].
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Let Z and Z+ be the set of integers and nonnegative integers, respec-
tively. A homogenous linear Diophantine equation system consists of n
equations in m nonnegative unknowns,

Ax = O, where A ∈ Zn×m, x ∈ Zm
+ . (1)

A is the coefficient matrix and x is the column of unknowns.
A solution to (1) is irreducible if it is not a sum of two non-zero

solutions to the same system. The set H of all irreducible solutions to (1)
is called Hilbert basis, which is unique and finite. The general solution to
(1) is

x =
∑

h∈H
chh for some ch ∈ Z+.

Moving terms with negative coefficients in each equation to another
side, we rewrite (1) with nonnegative matrices A′ and A′′ (i.e., A = A′ −
A′′, A′, A′′ ≥ O):

m∑

j=1

a′ijxj =
m∑

j=1

a′′ijxj , i = 1, 2, . . . , n, (2)

where min{a′ij, a′′ij} = 0 for any i, j.
In our previous work [1] (and references therein), we studied restric-

tions to A′′ that leads to a mapping between systems (1) and commutative
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context-free grammars [2]. In this case, (1) can be used as a tool for mod-
eling the topology of computer networks [3, 4]. In particular, Hilbert
basis provides a compact description of the routes structure, although the
number of possible network paths can be essentially large.

In this talk we consider (2) with no additional restriction to A′′. We
present formal construction of a commutative grammar for arbitrary sys-
tem (2). In contrast with the previously studied cased, such a grammar
is context-sensitive in general case. Grammatical derivations map to so-
lutions to (2).

This mapping can be described in terms of a directed hypergraph
where vertices are grammar nonterminals (n equations) and hyperarcs
are grammar rules (m unknowns). In such a graph, a basis solution to (2)
represents a cyclic-like structure with certain minimality properties.

References

[1] D. Korzun. Syntactic methods in solving linear Diophantine equa-
tions. Annual Finnish Data Processing Week at Petrozavodsk State
University (FDPW 2004): Advances in Methods of Modern Informa-
tion Technology. Vol. 6, 151–156.

[2] J. Esparza. Petri nets, commutative context-free grammars, and basic
parallel processes. Fundamenta Informaticae, Vol. 30 (1997),23–41.

[3] D. Korzun and A. Gurtov. A Diophantine model of routes in structured
P2P overlays. ACM SIGMETRICS Performance Evaluation Review.
Vol. 35, Issue 4 (2008), 52–61.

[4] Ю.А. Богоявленский, К.А. Кулаков, Д.Ж. Корзун. Линейные ди-
офантовы модели восстановления соединений в сетях MPLS. Ин-
формационные технологии, №3 (2011), 7–13.



66

Minimum Number of Input Clues in

an Associative Memory

Ville Junnila, Tero Laihonen

Department of Mathematics and Statistics, University of Turku
Turku, Finland

In a recent article by Yaakobi and Bruck (2012), the question how
stored information can be efficiently retrieved from associative memories
was studied. An associative memory is modeled by a graph G = (V,E).
The vertices represent the stored information units and the edges between
them define the associations of information units to each other. Two
distinct vertices x, y ∈ V are t-associated if the graphic distance d(x, y) ≤
t. Let us denote by Bt(x) the closed t-neighborhood of x. For any T ⊆ V ,
denote

St(T ) =
⋂

c∈T

Bt(c).

Let m be a positive integer. A reference set is a subset C ⊆ V . We
retrieve an information unit x ∈ V from the associative memory in the
following manner. A set of m distinct elements T = {c1, . . . , cm} ⊆ C
t-associated with x, called input clues, are given. As an output set we
receive St(T ). The smaller the output set is, the more precisely we know
the sought information unit. The maximum size of an output set over any
T ⊆ C with |T | = m is called the uncertainty. Naturally, we wish to set
an upper bound, say N , on the uncertainty. We also need to make sure
that we have access to every information unit x ∈ V . This requires that
|It(x)| ≥ m where

It(x) = Bt(x) ∩ C.
This gives rise to the following definition.

Definition 1 We say that a pair (G,C) is a (t,m,N)-associative memory
with the reference set C if
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(i) |It(x)| ≥ m for any x ∈ V and

(ii) |St(T )| ≤ N for any subset T ⊆ C of size m.

In this paper, we focus on unambiguous output by setting N = 1. We
give bounds on the minimum number of input clues needed and optimal
constructions attaining the bounds. Moreover, we discuss the maximum
number of memory entries when m and |C| are given. We also investigate
the problem of forced vertices, i.e., those vertices which must belong to
C.
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We consider two types of configuration models [1, 2] of random graphs.
Let graph nodes be numbered from 1 to N and node degrees ξ1, ξ2, . . . , ξN
be drawn independently from one of the two given distributions: power-
law (1) or Poisson (2).

P{ξ ≥ k} = k−τ , k = 1, 2, . . . , τ > 1, (1)

P{ξ = k} = λk

k!
e−λ, k = 1, 2, . . . , λ > 0. (2)

For each graph node the number of stubs (or half edges) is defined
by a given distribution. To form a graph all the stubs are joined one to
another with equal probability to form links. If the sum of node degrees
is odd one stub is added to a random node in order to form a lacking link.

One of the important trends in random graphs’ field has been the
study of graphs robustness to different types of breakdowns [1, 3, 4]. In
this work we consider random graphs resilience to random and to targeted
node destructions from a viewpoint of node saving. This approach has
appeared as modelling of forest fires [5, 6] as well as banking system
defaults so that to minimize their negative effects [7].

Let view graph nodes as trees on a confined area of a real forest, placing
them in the nodes of a square lattice sized 100×100. Nodes are connected
in a closest neighbour manner in a way that a link existence means the fire
propagation between neighbouring nodes. A relation between an average
node degree m and the parameters of node degree distributions is the

∗The work was supported by the Russian Foundation for Basic Research, grant
13-01-00009.
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following: m = ζ(τ) = λ, where ζ(x) is the Riemann zeta function. Thus,
we consider random graphs sized 3000 ≤ N ≤ 10000 and m ≤ 8 (as a
fully packed lattice gives every inner node 8 adjacent neighbours).

Fire starts either from an equiprobably chosen node (random fire start)
or from a node with the highest degree (target fire start) spreading onto
neighbouring nodes with a probability 0 < p ≤ 1. The study aims at find-
ing the best topology of configuration random graph that ensures maxi-
mum survival of nodes in case of a fire.

By computer simulations we considered forest fire models on both
graph types (power-law and Poisson) in two fire start cases: random (when
the fire starts from an equiprobably chosen node) and target (when fire
starts from a node with the highest degree). In each situation we found
the optimal values of node degree distribution parameters (τ for power-
law and λ for Poisson) that ensure maximum survival of graph nodes. The
results showed that both power-law and Poisson random graphs are more
robust in case of a random fire start than at targeted attack on a node
with the highest degree. We also compared considered graphs (power-law
and Poisson) from a viewpoint of the number of survivor nodes under the
same initial conditions: the values of N and p. Thus, when a fire starts
“randomly” more nodes will survive if node degrees follow the power-
law distribution rather than Poisson distribution. However, if a fire starts
from a node with the highest degree the topology that will give the highest
node survival depends on both the fire transition probability p and the
initial graph size N . If the following condition is true:

N ≥ 2088.1 +
894.2

p
, (3)

the power-law topology will ensure more nodes to survive in case of a
target fire start, otherwise a Poisson node degree distribution will give
better results.
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Recently, researchers in economics, AI, and computer science become
entertained lively concerns about relationships between knowledge and
actions. At what point does an economic agent sufficiently know to stop
gathering information and make decisions? There are also concerns about
cooperation and knowledge. What is the role of sharing knowledge to
making cooperation among agents?

Considering a coalition among agents, we tacitly understand that each
agents in the coalition share their individual information and so they
commonly know each other. In mathematical point of view yet a little is
known what structure they have to know commonly. The aim of this paper
is to fill the gap. Our point is that in a coalition, the members does not
necessary have common-knowledge to each others but they communicate
his/her own beliefs on the others to each other through messages.

The purposes of this paper are to introduce the concept of Subgroup
Nash equilibrium of a strategic game, and to show that a communication
among the players in a coalition leads to the equilibrium through mes-
sages. A Subgroup Nash equilibrium for a strategic game consists of (1) a
subset S of players, (2) independent mixed strategies for each member of
S, (3) the conjecture of the actions for the other players not in S with the
condition that each member of S maximizes his/her expected payoff ac-
cording to the product of all mixed strategies for S and the other players’
conjecture.

This paper analyses the solution concept from the Bayesian point of
view: The players start with the same prior distribution on a state-space.
In addition they have private information which is given by a partition of
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the state space. Each player in a coalition S predicts the other players’
actions as the posterior of the others’ actions given his/her information.
He/she communicates privately their beliefs about the other players’ ac-
tions through messages among all members in S according to the com-
munication network in S, which message is information about his/her
individual conjecture about the others’ actions. The recipients update
their belief by the messages. Precisely, at every stage each player com-
municates privately not only his/her belief about the others’ actions but
also his/her rationality as messages according to a protocol and then the
recipient updates their private information and revises her/his prediction.

In this circumstance, we shall show that

Main theorem. Suppose that the players in a strategic form game have
the knowledge structure associated a partitional information with a com-
mon prior distribution. In a communication process of the game according
to a protocol with revisions of their beliefs about the other players’ actions,
the profile of their future predictions converges to a Subgroup Nash equi-
librium of the game in the long run.
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We study a cooperative game determined on an undirected graph.
The characteristic function is determined by special way taking into ac-
count the number of connections and the path lengths between nodes
in the graph. An allocation imputation procedure is proposed and it is
proven that it coincides with the Myerson value. We introduce the al-
gorithm based in generating functions for computing the Myerson value
in communication networks. Examples of applying the allocation rule for
analysis of the transportation networks are provided.
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search (project 13-01-91158) and the Division of Mathematical Sciences of the Russian
Academy of Sciences.

c©V.V. Mazalov, L.I. Truhina, 2014



74

Undecidability for Integer Weighted
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1. Introduction

In the universality problem we are given an automaton A accepting
words over an alphabet A, and it is to determine whether or not A accepts
all possible inputs over A. In this paper we consider the universality
problem for integer weighted finite automata accepting infinite words.
The model of automata to be considered has a finite number of states,
and acceptance is defined by existence of a path (or a computation) that
visits a final state infinitely often. The requirement of the acceptance is
that in Büchi automata; see [1]. The universality problem is known to
be decidable for the Büchi automata. Indeed, this follows from the facts
that the family of languages accepted by Büchi automata is closed under
the complementation and the emptiness problem is decidable for Büchi
automata; see, e.g., Thomas [7].

We shall prove that the universality problem is undecidable for Büchi
automata having weights on the transitions from the additive group of
integers. The weight of a path is the sum of weights of its transitions.
We shall prove the undecidability result even for automata having merely
three states. In our automata each transition of the underlying automaton
may have several copies with different weights.

c©V. Halava, T. Harju, R. Niskanen, I. Potapov, 2014
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We shall use the undecidability of the universality problem to prove
that deciding whether a Robot Game with states has a winning strategy
is also undecidable.

We prove that the universality problem is undecidable for integer
weighted Büchi automata by reducing the instances of the infinite Post
Correspondence Problem, or the ω PCP, to the universality problem. The
ω PCP is a natural extension of the Post Correspondence Problem. In
ω PCP morphisms g, h are given and the solution is an infinite word w
such that for every finite prefix p of w either h(p) < g(p) or g(p) < h(p).
The ω PCP was shown to be undecidable for instances of size 9 in [4].
The proof uses a reduction from the termination problem of the semi-
Thue systems proved to be undecidable for the 3-rule semi-Thue systems
from [5]. Later in [2] the ω PCP was proved to be undecidable for in-
stances of size 8, using the same ideas but also with an encoding that
helped to decrease the number of letters. In both articles, the possible
solution is of a particular form and this form has a significant role in our
proof. In particular if w is not a solution, then the first position where
h(w) and g(w) differ (called the error) is reached in h(w) at least one
letter (of w) earlier than it is reached in g(w).

2. The weighted Büchi automaton

For the proof of undecidability of the universality problem for weighted
finite automata, for each instance (h, g) of the ω PCP, we need to construct
an integer weighted Büchi automaton Aγ such that its language L(Aγ) 6=
Aω if and only if the instance (h, g) has an infinite solution. This is done
by constructing the automaton in such way that word w has zero weight
if and only if there is an error in w. This is done by having special edges
for error guessing and error verifying.

Theorem 1 It is undecidable whether or not L(Aγ) = Aω holds for 3-
state integer weighted Büchi automata Aγ over its alphabet A.

We can modify the automaton of previous Theorem such that all of
its states are final.

Corollary 1 It is undecidable whether or not L(Bγ) = Aω holds for 3-
state integer weighted Büchi automata Bγ, where each state is final, over
its alphabet A.
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3. Application to Robot Games with states

We use Theorem 1 to prove undecidability of finding a winning strategy
in Robot Games with states. The idea is that one player gives input
letters one by one and the other player has to match them according to
the automaton. The first player has a way to check whether the second
player chose a correct letter and he wins if that did not happen. On the
other hand, if the first player checks and the letter is properly matched,
the second player wins.

A Robot Game with states consists of two players, Attacker and De-
fender having sets of vectors U1, . . . , Ur ⊆ Zn and V1, . . . , Vs ⊆ Zn, finite
automata A and B, respectively. An initial vector x0 of the game is given.
For each automaton, there is a bijective mapping from transitions to vec-
tors in vector sets. That is, the vectors players can play are represented
by transitions in the underlying automaton.

The game goes on in the following way. Starting from x0 players
add a vector from a respective set, determined by the underlying finite
automaton, to the current position of the game in turns. Attacker tries to
reach the origin while Defender tries to keep Attacker from reaching the
origin. Note that it is possible that x0 = (0, . . . , 0), in this case Attacker
does not trivially win the game.

The task is to determine whether or not there exists a winning strategy
for Attacker, i.e., can Attacker reach the origin regardless of the vectors
Defender chooses during his turns.

We construct a 2-dimensional Robot Game with states such that de-
ciding whether Attacker has a winning strategy is undecidable. The initial
vector of the game is x0 = (0, 0). Attacker’s automaton is a modification
of automaton of Corollary 1. The special checking state is added which
allows Attacker to win if Defender makes a mistake. The first component
of his vectors is used to simulate Bγ while with the second component he
has to match vectors played by Defender. Defender’s automaton does not
alter the first component.

It can be proved that Attacker has to match the second component of
the vector (0,−i) played by Defender. On the other hand, Defender has
to keep playing vectors (0,−i) if Attacker has matched them. Thus the
first component of the configuration gives us the following undecidability
result.
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(a,m(|h(a)| − |g(a)|))

(a,m(k − |g(a)|) + jk)

(a,m(−|g(a)|))

(a,−mℓ− c)
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qc

(am−1, 0)

(am−1, 0)(am−1, 0)
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(a, 0)

(am−1, 1)

q

Figure 4: The picture of the weighted automata A and B. In the figure
a ∈ A and |A| = m − 1, where A is the alphabet used in the proof of
Theorem 1.

Theorem 2 It is undecidable whether Attacker has a winning strategy in
2-dimensional Robot Game with states.
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[1] J.R. Büchi.On a decision method in restricted second order arithmetic.
In Proc. International Congress on Logic, Method, and Philosophy of
Science. 1–12, 1960.

[2] J. Dong, Q. Liu. Undecidability of Infinite Post Correspondence Prob-
lem for Instances of Size 8. RAIRO–Theor. Inf. Appl. 46 (2012), 451-
457.

[3] V. Halava, T. Harju. Undecidability in Integer Weighted Finite Au-
tomata. Fund. Inf 34 (1999),189-200.

[4] V. Halava, T. Harju. Undecidability of Infinite Post Correspondence
Problem for Instances of Size 9. RAIRO–Theor. Inf. Appl. 40 (2006),
551-557.

[5] Y. Matiyasevich, G. Sénizergues. Decision problems for semi-Thue sys-
tems with a few rules. Theor. Comput. Sci. 330(1) (2005),145-169.



Undecidability for Integer Weighted Büchi Automata 78
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The notion of Ck-critical n-connected graph was introduced byW.Mader
in [5]. This notion is a natural generalization of the notion of contraction-
critical n-connected graph: it means that for any ℓ ≤ k if some ℓ vertices
is a clique, than there is a n- vertices cutset contains all this ℓ vertices.
In a partial case of k = 3 it means, that contraction of any edge reduce
connectivity of graph by 1 and contraction of any triangle reduce the
connectivity by 2.

The problem of bounding the number of vertices of degree n in a
minimal and contraction-critical n-connected graph is well-known. First
time this question was asked by R.Halin in [2]. For n = 4 it was found
by N.Martinov [6] and, independently, by M.Fontet [3] that for any
contraction-critical 4-connected graph all of its vertices has degree 4. For
n = 5 the best known bound was found by Ando at al. [1] and, indepen-
dently, by S.A. Obraztsova and A.V. Pastor (RuFiDim-2012): at least 2/3
of vertices of contraction-critical minimal 5-connected graph has degree
5. For 6 ≤ n ≤ 10 it was proved by S.A.Obraztsova and A.V. Pastor
in [7, 8, 9], that at least 1/2 of vertices of such graph has degree n. For
n > 10 the best known bound is the result of W.Mader [4]: any minimal
n-connected graph contains at least n−1

2n−1 vertices of degree n.
The problem of bounding the number of vertices of degree n in a

C3-critical minimal n-connected graph is a natural generalization of the
previous problem. It was proved in [5], that any C3-critical graph is 6-
connected. So the case n < 6 is trivial. In this paper we research the
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structure of C3-critical minimal 6-connected graph G and its subgraph
G6 induced on the vertices of degree 6. We prove that any connectivity
component of G contains a cycle, and by a corollary we prove that any
C3-critical minimal 6-connected graph contains at least 5/9 vertices of
degree 6.
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A Schur ring or S-ring over a finite group G can be defined as a subring
of the group ring ZG that is a free Z-module spanned by a partition of
G closed under taking inverse and containing {1G} as a class. It is well
known that there is a Galois correspondence † between the permutation
groups on G that contain the regular group Gright, and the S-rings over G:

{Γ ≤ Sym(G) : Γ ≥ Gright} ⇄ {A ≤ ZG : A is an S-ring over G}. (1)

More precisely, the ”→” mapping is given by taking the partition of G
into the orbits of the stablizer of 1G in Γ, whereas the ”←” mapping
is given by taking the automorphism group of the colored Cayley graph
corresponding to the partition of G associated with A. The Galois closed
objects are called 2-closed groups and schurian S-rings, respectively. The
schurity problem consists in finding an inner characterization of schurian
S-rings.

The theory of S-rings was initiated by I. Schur (1933) and later devel-
oped by H. Wielandt and his followers. The starting point for Schur was
the Burnside theorem stating that any primitive permutation group con-
taining a regular cyclic p-group of composite order, is 2-transitive. Using
the S-ring method introduced by him, Schur generalized this theorem to
an arbitrary finite cyclic group G. To some extent this explains the fact
that ”Schur had conjectured for a long time that every S-ring over G is

∗based on joint work with Sergei Evdokimov

c© I. Ponomarenko, 2014
†We recall that a Galois correspondence between two posets consists of two map-

pings reversing the orders such that both superpositions are closure operators.
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determined by a suitable permutation group” [8, p.54]. This statement
had been known as the Schur-Klin conjecture up to 2001, when the first
examples of circulant (i.e. over a cyclic group) S-rings were constructed
in [1] by the authors. A recent result in [5] shows that schurian circulant
S-rings are relatively rare. In this paper we provide a solution to the
schurity problem for circulant S-rings.

The non-schurian examples of S-rings were constructed using the op-
eration of generalized wreath product introduced in [1] (and independently
in [6] under the name ”wedge product”). This is not suprising due to the
seminal Leung-Man theorem according to which any circulant S-ring can
be constructed from S-rings of rank 2 and cyclotomic S-rings by means of
two operations: tensor product and generalized wreath product [6]. Here
under a cyclotomic S-ring A we mean the ring of all K-invariant elements
of ZG where K is a subgroup of Aut(G):

A = (ZG)K . (2)

The Leung-Man theorrm reduces the schurity problem for circulant S-
rings to finding a criterion for the schurity of the generalized wreath prod-
uct. Such a criterion, based on a generalization of the Leung-Man theory
(see [2]), was obtained in paper [4] where the generalized wreath product
of permutation groups was introduced and studied. All these results form
a background to prove the main results of the paper.

Let A be a circulant S-ring. Suppose that among the ”bricks” in the
Leung-Man decomposition of A, there is a non-cyclotomic S-ring. Then
this ring is of rank 2, its underlying group has composite order and it is
Cayley isomorphic to the restriction of A to one of its sections. Moreover,
as it was proved in [4] the S-ring A has a quite a rigid structure that
enables us to control the schurity of A. This provides a reduction of the
schurity problem to the case when A has no rank 2 section of composite
order. The S-rings satisfying the latter property are quasidence in sense of
paper [5]. Thus without loss of generality we concentrate on the schurity
problem for quasidence S-rings.

Our first step is to represent the schurian closure Sch(A) of a quasi-
dense circulant S-ring A in a regular form (Theorem 1). The idea here
is to replace the ring A by a simpler one keeping the structure of its
Leung-Man decomposition. The simplification is achieved by changing
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each ”brick” for a group ring. This leads to the class of coset S-rings, i.e.
ones for which any class of the corresponding partition of the group G
is a coset of a subgroup in G. It appears that this class is closed under
restriction to a section, tensor and generalized wreath products, and con-
sists of schurian quasidense S-rings. The regular form of Sch(A)we want
to come, will be defined by means of the following concept.

Definition 1 The coset closure of a quasidense circulant S-ring A is the
intersection A0 of all coset S-rings over G that contain A.

The coset closure of any quasidense circulant S-ring is a coset S-ring.
Now, to clarify how to represent the schuran closure of A via its coset
closure, suppose that the group G is of prime order. In this case it is well
known that the S-ring A is of the form (2), and, moreover, A0 = ZG. In
particular, A is schurian and any automorphism of G induces a similarity
of A0.

‡ Furthermore, if the automorphism belongs to the group K, the
similarity is identical on A. Thus

A = (ZG)K = (A0)
Φ0

where Φ0 = Φ0(A) is the group of all similarities of A0 that are identical
on A. It appears that this idea works for any quasidense S-ring A.

Theorem 1 Let A be a quasidense circulant S-ring. Then

Sch(A) = (A0)
Φ0 .

In particular, A is schurian if and only if A = (A0)
Φ0 .

Theorem 1 gives a necessary and sufficient condition for an S-ring to
be schurian. This condition being a satisfactory from the theoretical point
of view, is hardly an inner characterization. To obtain the latter, we prove
Theorem 2 below. Let us discuss briefly the idea behind it.

One of the key properties of coset S-rings that is used in the proof
of Theorem 1, is that every similarity of any such ring is induced by
isomorphism. This fact also shows that in the schurian case the set of

‡Under a similarity of an S-ring A we mean a ring isomorphism of it that respects
the partition of G corresponding to A.
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all isomorphisms of A0 that induce similarities belonging to Φ0, forms a
permutation group the associated S-ring of which coincides with A. In
general, this is not true. A rough reason for this can be explained as
follows. Set

S0 = {S ∈ S(A0) : (A0)S = ZS} (3)

where S(A0) is the set of all A0-sections and (A0)S is the restriction of
A0 to S. Then in the schurian case every S-ring AS with S ∈ S0, must be
cyclotomic, whereas in general this condition does not necessarily hold.
However, if even all the S-rings AS are cyclotomic, one still might find
a section S for which AS 6= Sch(A)S . These two reasons are controlled
respectively by conditions (1) and (2) of Theorem 2.

It should be mentioned that the proof of the fact that the circulant
S-rings constructed in [1] are non-schurian, was based on studying the
relationship between their cyclotomic sections. More careful analysis can
be found in [3] where the isomorphism problem for circulant graphs was
solved. In that paper the authors introduce and study the notion of
projective equivalence on the sections of a circulant S-ring (this notion
is similar to one used in the lattice theory). It appears that the class
S0 defined in (3) is closed under the projective equivalence and taking
subsections. Moreover,

S(A0) = S(A).
To formulate Theorem 2 we need additional notation. For S ∈ S(A)

denote by AutA(S) the subgroup of Aut(S) that consists of all Cayley
automorphisms of the S-ring AS . A family

Σ = {σS}S∈S0

is called a multiplier of A if for any sections S, T ∈ S0 such that T
is projectively equivalent to a subsection of S the automorphisms σT ∈
Aut(T ) and σS ∈ Aut(S) are induced by raising to the same power§.
The set of all multipliers of A forms a subgroup of the direct product∏

S∈S0
AutA(S) that is denoted by Mult(A).

Theorem 2 A quasidense circulant S-ring A is schurian if and only if
the following two conditions are satisfied for all S ∈ S0:

§We recall that any automorphism of a finite cyclic group is induced by raising to
a power coprime to the order of this group.
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1. 1 the S-ring AS is cyclotomic,

2. 2 the restriction homomorphism from Mult(A) to AutA(S) is sur-
jective.

We prove that the class S0 consists of all A-sections S such that each
Sylow subgroup of S (treated as a section of G) is projectively equivalent
to a subsection of a principal A-section. Thus in contrast to Theorem 1,
Theorem 2 gives a necessary and sufficient condition for an S-ring A to be
schurian in terms of A itself rather than of its coset closure A0. It should
be remarked that in general the class S0 may contain non-cyclotomic
sections. However, we do not know whether condition (1) in Theorem 2
is implied by condition (2).

We would like to reformulate Theorem 2 in the number theoretical
language. In what follows we assume that condition (1) of that theorem
is satisfied. To make condition (2) more clear let us fix a section S0 ∈ S0

and an integer b coprime to nS0 = |S0| for which the mapping s 7→ sb,
s ∈ S0, belongs to AutA(S0). Let us consider the following system of
linear equations in integer variables xS , S ∈ S0:

{
xS ≡ xT (mod nT ),

xS0 ≡ b (mod nS0)
(4)

where S and T run over S0 and the section T is projectively equivalent to
a subsection of S. We are interested only in the solutions of this system
that satisfy the additional condition

(xS , nS) = 1 for all S ∈ S0. (5)

Every such solution produces the family Σ = {σS} where σS is the auto-
morphism of the group S taking s to sxS . Moreover, the equations in the
first line of (4) guarantee that if a section T is projectively equivalent to a
subsection of S, then the automorphisms σT ∈ Aut(T ) and σS ∈ Aut(S)
are induced by raising to the same power. Therefore,

Σ ∈Mult(A).

Conversely, it is easily seen that given S0 ∈ S every multiplier of A
produces a solution of system (4) for the corresponding b. Finally, the
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consistency of this system for all S0 and all possible b is equivalent to the
surjectivity of the restriction homomorphism from Mult(A) to AutA(S0)
for all S0. Thus we come to the following corollary of Theorem 2.

Corollary 1 Let A be a quasidense circulant S-ring such that for any
section S ∈ S0, the S-ring AS is cyclotomic. Then A is schurian if and
only if system (4) has a solution satisfying (5) for all possible S0 and b.

Corollary 1 reduces the schurity problem for circulant S-rings to solv-
ing modular linear system (4) under restriction (5). One possible way to
solve this system is to represent the group

∏
S AutA(S) as a permutation

group on the disjoint union of the sections S. Then every equation in
the first line of (4) defines a subgroup of that group the index of which
is at most n2. Therefore the set of solutions can be found by a standard
permutation group technique, see [7, p. 144] for details.
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Asymmetry in Discrete-Time

Bioresource Management Problem∗

Anna N. Rettieva

Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

Discrete-time game-theoretic models related to a bioresource manage-
ment problem (fish catching) are investigated. The players are countries
or fishing firms that harvest the fish stock. Players differ in their discount
factors and planning horizons. Two variants are considered: fixed and
random harvesting times.

The main goal here is to construct the value function for the cooper-
ative solution and to distribute the joint payoff among the players. We
propose to use Nash bargaining solution in order to determine cooperative
behavior.

1. Fixed harvesting times
Let two players (countries or fishing firms) exploit the fish stock. The

dynamics of the fishery is described by the equation

xt+1 = (εxt − u1t − u2t)α , x0 = x , (1)

where xt ≥ 0 – the size of population at a time t, ε ∈ (0, 1) – natural
survival rate, α ∈ (0, 1) – natural birth rate, uit ≥ 0 – the catch of player
i, i = 1, 2.

The first player extracts the stock n1 time moments, and the second –
n2. Let n1 < n2. So, we have the situation when on time interval [0, n1]
players cooperate and we need to determine their strategies. After n1 till
n2 the second player acts individually. So the players’ profits have forms

J1 =

n1∑

t=0

δt1 ln(u
c
1t) , J2 =

n1∑

t=0

δt2 ln(u
c
2t) +

n2∑

t=n1+1

δt2 ln(u
a
2t) , (2)

∗The research was supported by the Russian Fund for Basic Research, grants 13-
01-91158-GFEN a and 13-01-00033a.
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where uci , i = 1, 2 are the cooperative strategies, ua2 is the second’s player
strategy when she extracts the stock alone.

The main question arising here is how to construct the value function
for cooperative solution in the case when players have different discount
factors and planning horizons. We propose to use recursive Nash bargain-
ing solution to determine cooperative behavior.

We construct cooperative strategies and the joint payoff maximizing
the Nash product for the whole game, so we solve the following problem

(V c
1 (x, δ1)[0, n1]− V N

1 (x, δ1)[0, n1]) · (V c
2 (x, δ2)[0, n1] +

+V ac
2 (xcn1, δ2)[n1, n2]−V N

2 (x,δ2)[0, n1]−V aN
2 (xNn1, δ2)[n1, n2])→max , (3)

where V N
i (x, δi)[0, n1] are the non-cooperative gains, V

ac
2 (xcn1 , δ2)[n1, n2]

– the second player’s gain when acting individually after n1 periods of co-
operation,
V aN
2 (xNn1 , δ2)[n1, n2] – the second player’s gain when acting individu-

ally after n1 periods of noncooperation.

2. Random harvesting times
Here we consider an extension of the previous model where the stochas-

tic nature of real processes is captured. Let n1 be a random variable with
range {1, . . . , n} and corresponding probabilities {θ1, . . . , θn}. n2 is ran-
dom variable with the same range and probabilities {ω1, . . . , ωn}.

First, we determine the Nash equilibrium as we use it as a status-quo
point for the Nash bargaining solution.

Second, we construct cooperative strategies and the payoff maximizing
the Nash product for the whole game, so we solve the next problem

(V c
1 (1, x)− V N

1 (1, x))(V c
2 (1, x)− V N

2 (1, x)) =

= (

n∑

n1=1

θn1

[ n∑

n2=n1

ωn2

n1∑

t=1

δt1 ln(u
c
1t)+
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+

n1−1∑

n2=1

ωn2(

n2∑

t=1

δt1 ln(u
c
1t) +

n1∑

t=n2+1

δt1 ln(u
a
1t))
]
− V N

1 (1, x)) ·

·(
n∑

n2=1

ωn2

[ n∑

n1=n2

θn1

n2∑

t=1

δt2 ln(u
c
2t) +

+

n2−1∑

n1=1

θn1(

n1∑

t=1

δt2 ln(u
c
2t) +

n2∑

t=n1+1

δt2 ln(u
a
2t))
]
− V N

2 (1, x))→ max , (4)

where V N
i (1, x) = AN

i lnx+BN
i , i = 1, 2 are the non-cooperative gains.

The results of numerical modelling, in the stochastic case using Monte-
Carlo method, are presented.
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Equivalence Relations Defined by

Numbers of Occurrences of Factors∗

Aleksi Saarela

Department of Mathematics and Statistics
University of Turku, Turku, Finland

We study the question of what can be said about a word based on
the numbers of occurrences of certain factors in it. As a simple example,
suppose that we do not know the word u ∈ {0, 1}∗, but we know its length
|u| and the number of 0’s |u|0. Then we can of course deduce the number
of 1’s: |u|1 = |u|−|u|0. As another example, suppose that we do not know
the word u ∈ {0, 1}+, but we know its length |u|, first letter pref1(u), last
letter suff1(u), and the number of 01’s |u|01. Then we can deduce the
number of 10’s: |u|10 = |u|01 + pref1(u)− suff1(u).

To formally present some questions and results, we define an equiva-
lence relation: For an alphabet Σ, positive integer k, and set S ⊆ Σ≤k,
words u, v ∈ Σ∗ are called (k, S)-equivalent if |u| = |v|, |u|s = |v|s for
all s ∈ S, prefk−1(u) = prefk−1(v), and suffk−1(u) = suffk−1(v) (if
|u| < k − 1, we define prefk−1(u) = suffk−1(u) = u).

On one extreme, there is (1,∅)-equivalence, which takes into account
only the length of a word. On the other extreme, there is (k,Σ≤k)-
equivalence, which is known as k-abelian equivalence. Many sets S can
lead to the same equivalence. For example, it is known that Σk or
Σ≤k r aΣ∗ r Σ∗a (where a is an arbitrary letter) could be used instead
of Σ≤k in the definition of k-abelian equivalence. One of our motivations
is finding a characterization for the sets S such that (k, S)-equivalence is
the same as k-abelian equivalence.

The first specific question we study is the following: Given k and S,
for which t ∈ Σ≤k can we deduce |u|t based on the (k, S)-equivalence class
of u? The set of all such t does not depend on k and it is denoted by S.

∗Supported by the Academy of Finland under grant 257857.
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The second question is the following: For which S1, S2 is (k, S1)-
equivalence the same as (k, S2)-equivalence, or in other words, S1 = S2.
These two questions are of course closely related and we can answer both
of them by using linear algebra.

The third question is the number of (k, S)-equivalence classes of words
of length n. It is Θ(nm), where m is the size of the smallest set R such
that R = S.

It is known that every infinite aperiodic word w has factors of length
n in at least min(2k, n+ 1) k-abelian equivalence classes. Moreover, w is
Sturmian if and only if it has factors of length n in exactly min(2k, n+1)
k-abelian equivalence classes for all n. Analyzing the proof of this result
reveals that it can be generalized for (k, S)-equivalence whenever Σ ⊆ S.
If Σ * S, then such a generalization does not necessarily exist.
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On the Multiplicative Complexity of

Some Boolean Functions∗

Svetlana N. Selezneva
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In this paper, we study the multiplicative complexity of Boolean func-
tions. The multiplicative complexity µ(f) of a Boolean function f is the
minimal number of &-gates (binary multiplications) in circuits in the ba-
sis {x&y, x ⊕ y, 1} that compute the function f . Some results of the
multiplicative complexity of Boolean functions are in [1–6].

Introduce some definitions. A Boolean function f of n variables is a
mapping f : Bn → B, where B = {0, 1}, n = 0, 1, . . . . Each Boolean func-
tion f(x1, . . . , xn) can uniquely be represented by a Zhegalkin polynomial,
i.e., by an EXOR sum of monomials (of positive products of variables).
The degree deg(f) of a Boolean function f(x1, . . . , xn) is the maximal
number of variables in monomials of the Zhegalkin polynomial for the
function f . In [1], it was proved that µ(f) ≥ deg(f) − 1 holds for an
arbitrary Boolean function f . This is the best known lower bound of
the multiplicative complextity for explicitly defined Boolean functions. It
is clear that, for example, this bound is exact for the conjunction of n
variables, i.e., for the function x1x2 . . . xn.

A Boolean function g is called affine iff deg(g) ≤ 1. A Boolean function

f is called multi-affine iff f can be represented in the form
m∏
i=1

gi where

g1, . . . , gm are affine functions. In [1], it was shown that µ(f) = deg(f)−1
holds for an arbitrary multi-affine Boolean function f . In this paper, we
consider functions that can be represented as an EXOR sums of two multi-
affine functions, and we prove the following theorem.

∗This work is supported by RFBR, grant 13-01-00684-a.
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Theorem 1 If n ≥ 2, and a Boolean functions f(x1, . . . , xn) can be rep-
resented in the form f1(x1, . . . , xn)⊕f2(x1, . . . , xn), where f1, f2 are multi-
affine functions, then

1) µ(f) = n− 2 in the case of deg(f1) = deg(f2) = n;
2) µ(f) = n− 1 in the case of deg(f1) = n, deg(f2) < n;
3) µ(f) ≤ n− 1 in the case of deg(f1) < n, deg(f2) < n.

A Boolean function f(x1, . . . , xn) is called quadratic iff deg(f) =
2. In [1, 2], it was shown that µ(f) ≤ ⌊n/2⌋ holds for an arbitrary
quadratic Boolean function f(x1, . . . , xn), and, moreover, quadratic func-
tions f(x1, . . . , xn) with µ(f) = ⌊n/2⌋ were described. In this paper, we
extend this result, and we prove the following theorem.

Theorem 2 If n ≥ 3, and a Boolean function f(x1, . . . , xn) can be rep-
resented in the form x1 . . . xn⊕q(x1, . . . , xn), where q is a quadratic func-
tion, then µ(f) = n− 1.

The multiplicative complexity of Boolean functions in the worst case
was studied. In [3], it was obtained that for an arbitrary Boolean function
f(x1, . . . , xn), µ(f) ≤ 2 · 2n/2 − O(n) holds, if n is even, and µ(f) ≤
(3/
√
2) · 2n/2 − O(n) holds, if n is odd. In this paper, we improve these

upper bounds, and we prove the following theorem.

Theorem 3 For an arbitrary Boolean function f(x1, . . . , xn), µ(f) ≤
(3/2) · 2n/2 + o(2n/2) holds, if n is even, and µ(f) ≤

√
2 · 2n/2 + o(2n/2)

holds, if n is odd.
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Palindromes are among the most important and actively studied rep-
etitions in words. Recall that a word w = a1 · · · an is a palindrome if
a1 · · · an = an · · ·a1. In particular, all letters are palindromes; the empty
word is also considered as a palindrome, but below we do not count it. A
group of combinatorial problems concerns the possible number of distinct
palindromic factors, or subpalindromes, in a word. We call this number
palindromic richness.

Clearly, for the words containing k different letters the lower bound for
their palindromic richness is k. If k > 2, then this bound is sharp, since
the infinite word (a1 · · · ak)ω, where a1, . . . , ak are different letters, has no
subpalindromes except letters. For k = 2 the situation is less obvious:
the minimum richness of an infinite word is 8, and the minimum richness
of an aperiodic infinite word is 10 [2]. On the other hand, the maximum
richness of an n-letter word over any alphabet is n, as was first observed
in [1]. Such “rich” words are objects of intensive study (see, e.g., [3]).

However, the extremums mentioned above give no clue about the
generic case.

Observation Any number between 8 and N in the binary case, and
between k and N in the k-ary case with k > 2 is the palindromic richness
of a word of length N .

So, the following question is quite natural:

c© M. Rubinchik, A. M. Shur, 2014
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what is the expected palindromic richness of a random word of length N?

We studied this question using both theory and numerical experiments.
Our main theoretic result is the following

Theorem 1 For any fixed alphabet Σ, the expected palindromic richness
of a random word of length N over Σ is Θ(

√
N).

Note that the expected total number of nontrivial subpalindromes in
a random word is Θ(N), but the constant drops quickly as the alphabet
grows. In a contrast with that, the constant in the Θ-expression from
Theorem 1 even grows with k = |Σ|. More precisely, we proved that this
constant C(k)

• tends to an absolute constant as k → ∞ if N is close to an even
power of k;

• grows as
√
k if N is close to an odd power of k;

• stays in between the above extremal values in the remaining cases.

We also performed some computational experiments based on the
linear-time algorithm for counting distinct subpalindromes in a word [4].
By averaging the data obtained for groups of random words we derive the
following estimations for C(k):

k C(k) for even powers C(k) for odd powers
2 6.129 for N = 216 6.164 for N = 217

3 4.393 for N = 312 4.408 for N = 313

10 3.023 for N = 106 3.388 for N = 107

50 2.702 for N = 504 5.038 for N = 503

The figures in the central column decrease but seem to have a limit about
2.5. The figures in the rightmost column demonstrate an initial decrement
but then grow back to follow the theoretical bound of Θ(

√
k). All these

figures are nicely predicted by a very simple probabilistic model in which
all events of the form “to contain a fixed subpalindrome u of length p”
are assumed independent and equiprobable. This is worth noting because
these events in fact are dependent and have different probabilities.
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Some Models of Representation of

Two Parallel FIFO-queues and Their

Optimal Control∗

Eugene A. Barkovsky

Institute of Applied Mathematical Research,
Karelian Research Centre RAS, Petrozavodsk, Russia

In many applications, such as the development of various network de-
vices and embedded operating systems it is required to work with multiple
FIFO-queues, located in the shared memory space. Mechanism of paged
virtual memory is not used here, and the entire operation occurs in mul-
tiple memory pools. The number of queues in such devices can reach
several hundreds and thousands, and in the future, according to experts,
may reach several million [1]. To represent FIFO-queues different software
or hardware solutions are used [2, 3, 4].

Suppose that in the memory size ofm we work with two parallel FIFO-
queues. Operations with queues are performed by the following scheme:
on the odd step occurs operation of insertion in one of the queues, on the
even step — deletion from any of the queues, where some probabilities
of operations performed with queues are known. Assume that p1 and p2
are probabilities of insertion in the first and second queue respectively;
p12 — probability of simultaneous insertion in both queues. q1 and q2 —
probabilities of deletion from the first and second queue respectively; q12
— probability of simultaneous deletion from both queues. Since Markov

∗This research work was supported by Russian Foundation for Basic Research, grant
12-01-00253-a and by program of the strategic development of PetrSU as a part of the
complex of measures for the development of research activities.
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chain, built on the basis of such formulation of the problem, will not
be regular and uniform, two consecutive steps are combined in one and
also we introduce the following probabilities of operations that do not
change the length of the queue (for example, reading): r1 — on the odd
step and r2 — on the even step, where r1 6= 0, r2 6= 0. Accordingly,
p1 + p2 + p12 + r1 = 1, q1 + q2 + q12 + r2 = 1.

Here we propose mathematical and simulation models of the process of
working with two parallel FIFO-queues and solve the problem of optimal
partitioning of shared memory in following cases:

I. Queues are sequential and cyclic.
II. Queues move in a circle one after another.
In both cases the criterion of optimality is the minimum average por-

tion of lost elements on an infinite time. The forms of the matrixes of
transition probabilities, corresponding to Markov chain, were established
and algorithms of their generation were created.

We work with problems of nonlinear discrete programming where the
criterion of optimality is defined algorithmically. To solve said problems
we use apparatus of controlled random walks, Markov chains [5] and sys-
tem Intel Math Kernel Library PARDISO.
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I am going to speak about a classical quantity m(n) introduced by
Erdős and Hajnal in 1961 (see [1]).

A hypergraph H = (V,E) is said to have property B, if there is a
2-coloring of V with no monochromatic edges. Denote by m(n) the min-
imum number of edges in a hypergraph that does not have property B.

The best known bounds for m(n) are as follows:

c

√
n

lnn
2n < m(n) < c′n22n.

The lower bound is due to Radhakrishnan and Srinivasan (see [2]), and
the upper bound was given by Erdős.

I want to present a new simple proof of the lower bound (based on ideas
by A. Pluhár from [3]) and a new lower bound for a quantity m(n, r) that
generalizes m(n) onto the case of r colors.

This is my joint work with J. Kozik.
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Consider a continuous block of m cells, which we use to implement n
LIFO-stacks. Assume that the time is discrete and one of the following
operations can happen during each time step:

• insertion of the element into i-th stack with the probability pi,

• deletion of the element from i-th stack with the probability qi
(1 ≤ i ≤ n),

• access the element with the probability r (stacks don’t change their
lengths).

The time to absorbtion and the final sizes of stacks are random vari-
ables whose distributions depend on m and the probabilities of insertion
and deletion. There are several methods of representation of stacks in
single-level memory. In [2],[3] we considered consecutive and linked rep-
resentations of stacks.
In the case of paged representation all the memory is split into parts with
equal sizes. Let k is the size of page. Then ⌊m/k⌋ is the total number of
pages. Each page contains a link to previous page and may contain k− 1
elements of one of stacks.
In the case of insertion of element if memory in page is exausted it will be

∗This research work was supported by the Russian Foundation for Basic Research,
grant 12-01-00253-a and program of the strategic development of PetrSU as a part of
the complex of measures for the development of research activities.
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put into one of empty pages. If there is no one then the overflow occurs.
In the case of deletion of element if it is the only element in page then
the page becomes empty. At the begining of work all stacks are empty
and there is no shutdown in the case of deletion of element from empty
stack. The problem is to find the average time T of working before mem-
ory overflow.
As the mathematical model we used the apparatus of absorbing Markov
chains. In this paper we calculated average time of working with stacks
in the case of paged representation and compared it with consequtive and
linked representations.
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Abstract

In this article we show that if we consider binary strings as bi-
nary representations of integer numbers, then for any deterministic
finite automaton A and for any integer k there is such determinis-
tic automaton B that language of automaton B is language of all
integers from language of automaton A decreased by k, and also we
present upper bound on the size of automaton B.

Let Λ be a set of all deterministic finite automatons with alphabet
Σ = {0, 1} and N be a set of all positive integers. Let f : Λ× N→ {0, 1}
be a function that takes an automaton A = 〈Σ, Q, q0, δ, T 〉 and a positive
integer x as its input and returns 0 and 1 as its output depending on
whether automaton A accepts standard binary representation of number
x or not. More strictly: let x = al · 2l + al−1 · 2l−1 + · · · + a0, where
ai ∈ {0, 1}, al = 1, qt = δ(q0, alal−1 . . . a0). Then f(A, x) = 1 if qt ∈ T ,
and f(A, x) = 0 otherwise.

Theorem 1 For any automaton A ∈ Λ with n states and for any integer
k ∈ N there is such automaton B ∈ Λ with no more than

⌈
k
2

⌉
n2+2kn+2k

states that for any x ∈ N f(B, x) = f(A, x+ k).

Proof. The proof will be divided into three parts. First of them will
contain explicit construction that produce required automaton for k = 1.
Second part will show how to generalize this construction for any k, but
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with resulting automatons having 2kn2+2k states. And the last part will
present more detailed analysis of produced automatons and a proof of the
fact that any of them have equivalent one with required number of states.

Later on we will be using the following utility functions:

• 1Y : X → {0, 1}— indicator function of subset Y of set X (1Y (x) =
1 if x ∈ Y , 1Y (x) = 0 otherwise).

• g : Λ→ S, where S is a union of all states of all automatons in Λ. g
is a function that takes an automaton A ∈ Λ and an integer x ∈ N
and returns the final state of automaton A after processing binary
representation of number x as its output.

• binl : {0, . . . , 2l − 1} → {0, 1}l — function takes an integer as its
intput and returns its binary representation padded with zeros to
the length of l. That is if x = 2l−1al−1 + 2l−2al−2 + · · ·+ a0, where
ai ∈ 0, 1, then binl(x) = al−1al−2 . . . a0.

• modm : N → {0, . . . ,m − 1} — function that returns remainder of
interer division by m, i.e. modmx = x−m

⌊
x
m

⌋

In particular, for any automatonA = 〈Σ, Q, q0, δ, T 〉 f(A, x) = 1T (g(A, x)).

Part 1. For the beginning let us examine a change in the binary
representation of a number after we add 1 to it. Consider some positive
integer x. Let alal−1 . . . a1a0 be its binary representation, i.e. x = 2lal +
2l−1al−1 + · · ·+ 2a1 + a0. If a0 = 0, then x+ 1 = 2lal + 2l−1al−1 + · · ·+
2a1+a0+1 = 2lal+2l−1al−1+ · · ·+2a1+1, that is binary representation
of such number is simply alal−1 . . . a11. If we denote x′ =

⌊
x
2

⌋
, i.e., in

substance, number x without last binary digit, then representation of
number x+ 1 when a0 = 0 is representation of number x′ with appended
digit 1. If a0 = 1, then x + 1 = 2lal + 2l−1al−1 + · · · + 2a1 + a0 + 1 =
2lal+2l−1al−1+ · · ·+2a1+2 = 2((2l−1al+2l−2al−1+ · · ·+a1)+1)+0 =
2(x′ +1)+0, i.e. binary representation of x+1 is a binary representation
if x′+1 with appended digit 0. So, binary representation of number x+1
is either binary representation of number x′ with single digit appended
or binary representation of number x′ + 1 with single digit appended.
As a followup, we may conclude that in order to know the final state of
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an automaton after processing binary representations of numbers x and
x + 1 we don’t need to know number x itself, it’s sufficient to know last
digit of binary nsotation of x and final states of this automaton after
processing binary representations of numbers x′ and x′ + 1. So, for any
automaton A ∈ Lambda we may build new automaton B ∈ Lambda
such that its set of states is a set of pairs of states of automaton A and
such that for any positive integer x if automaton A resulted in being
in states a and b after processing binary representations of numbers x
and x + 1 respectively, then automaton B results in being in state (a, b)
after processing binary representation of number x. If we choose a set
of all pairs (a, b) such that b is terminal state in automaton A as a set
of terminal states of automaton B, then automaton B will correspond to
required equality f(B, x) = f(A, x + 1). Let us explicitly write down a
structure of automaton B. Let A = 〈Σ, Q, q0, δ, T 〉, B = 〈Σ, Q′, q′0, δ

′, T ′〉.
Then:

Q′ = Q×Q
q′0 = (q0, δ(q0, 1))
δ′((a, b), 0) = (δ(a, 0), δ(a, 1))
δ′((a, b), 1) = (δ(a, 1), δ(b, 0))
T ′ = Q× T

Let us assure that automaton B indeed corresponds to the stated condi-
tion, i.e. for any x ∈ N g(B, x) = (g(A, x), g(A, x+1)). Denote by len(x)
length of binary representation of number x and carry out the proof with
mathematical induction on len(x). Basis. len(x) = 1. There is only one
such integer — x = 1. For it: g(B, 1) = δ′(q′0, 1) = δ′((q0, δ(q0, 1)), 1) =
(δ(q0, 1), δ(δ(q0, 1), 0)) = (δ(q0, 1), δ(q0, 10))=(g(A, 1), g(A, 2))=(g(A, x),
g(A, x + 1)). Inductive step. Let x′ =

⌊
x
2

⌋
. Then len(x′) = len(x) − 1

and, according to induction hypothesis, g(B, x′) = (g(A, x′), g(A, x′+1)).
If last digit of x is 0, i.e. x = 2x′, then g(B, x) = δ′(g(B, x′), 0) =
δ′((g(A, x′), g(A, x′ + 1)), 0) = (δ(g(A, x′), 0),δ(g(A, x′), 1)) = (g(A, 2x′),
g(A, 2x′+1)) = (g(A, x), g(A, x+1)). Otherwise x = 2x′+1 and g(B, x) =
δ′(g(B, x′), 1) = δ′((g(A, x′), g(A, x′ + 1)), 1) = (δ(g(A, x′), 1), δ(g(A, x′ +
1), 0)) = (g(A, 2x′+1), g(A, 2(x′+1))) = (g(A, x), g(A, x+1)), q.e.d. The
last thing to note is that resulting automaton has exactly n2 states, which
is less than required

⌈
k
2

⌉
n2 + 2nk + 2k = n2 + 2n+ 2. So, proof for the

case k = 1 is complete.
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Part 2. Let us select some integer k > 1. Denote l = ⌈log2 k⌉, m = 2l.
Again examine changes in binary representation of some integer x after
adding k to it. For convinience we will consider only case x ≥ m, since
cases x < m will be worked around separetely anyway. Let x′ =

⌊
x
m

⌋
,

x′′ = modmx. Then binary representation of number x itself is binary
representation of number x′ with binl(x

′′) appended to it. If x′′ + k < m,
then x+ k = mx′ + (x′′ + k) and binary representation of x+ k is simply
binary representation of x′ with binl(x

′′ + k) appended to it. Otherwise
x+k = mx′+x′′+k = m(x′+1)+(x′′+k−m). Since x′′ < m and k ≤ m,
then 0 ≤ x′′ + k −m < m, and binary representation of number x + k is
binary representation if x′ + 1 with binl(x

′′ + k −m) appended to it. So,
binary representation of number x+k is either binary representation of x′

or binary representation of x′+1 with some l symbols appended, and that
l symbols depend only on number x′′, i.e., in substance, on last l symbols
of binary representation of number x itself. So, in order to determine
final state of some automaton after processing binary representation of
number x+k it is sufficient to know its final states after processing binary
representations of numbers x′ and x′ + 1, and also last l digits of binary
representation of number x.

These all gives us a possibility to build for any automaton A ∈ Lambda
new automaton that will be working essentially the same way as an au-
tomaton described in previous part, only processing representation of a
number with delay of l symbols. More definitely: let A = 〈Σ, Q, q0, δ, T 〉.
Than we will choose a set Q×Q×{0 . . .m− 1}∪ {0 . . .m− 1} as a set of
states of new automaton B, q′0 = 0 as its initial state. Let us write down
transition function δ′ of automaton B and prove that it conforms to our
conditions.

δ′(q, a) =

{
2q + a if 2q + a < m
(δ(q0, 1), δ(q0, 10), (2q + a−m)) if 2q + a > m

δ′((p1, p2, q), a) =

{
(δ(p1, 0), δ(p1, 1), (2q + a)) if 2q + a < m
(δ(p1, 1), δ(p2, 0), (2q + a−m)) if 2q + a > m

Lemma 1 For any number x ∈ N g(B, x) = x if x < m and g(B, x) =

(g(A,
⌊

x
m

⌋
), g(A,

⌊
x
m

⌋
+ 1),modmx) otherwise.

Proof. Proof will be held with mathematical induction on len(x). Basis.
len(x) = 1. There is only one such integer — x = 1. For it: g(B, x) =
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δ′(q′0, 1) = δ′(0, 1) = 2 · 0 + 1 = 1, because 1 < m. Inductive step. Let
len(x) = t, binary representation of x be at−1at−2 . . . a0. There are three
possible cases:

• t ≤ l. It means that x < m. Then g(B, x) = δ′(q′0, at−1at−2 . . . a0) =
δ′(δ′(q′0, at−1at−2 . . . a1), a0) = δ′(g(B,

⌊
x
2

⌋
), a0) = δ′(

⌊
x
2

⌋
, a0) =

2
⌊
x
2

⌋
+a0 = x, since at−1at−2 . . . a1 is binary representation of

⌊
x
2

⌋
,

len(
⌊
x
2

⌋
) = t− 1.

• t = l + 1. It means that m ≤ x < 2m, correspondingly,
⌊
x
2

⌋
< m,⌊

x
m

⌋
= 1. Then

g(B, x) = δ′(q′0, at−1at−2 . . . a0) = δ′(δ′(q′0, at−1at−2 . . . a1), a0) =
δ′(g(B,

⌊
x
2

⌋
), a0) = δ′(

⌊
x
2

⌋
, a0) = (δ(q′0, 1), δ(q

′
0, 10), (2

⌊
x
2

⌋
+ a0 −

m)) = (g(A, 1), g(A, 2), x − m) = (g(A,
⌊

x
m

⌋
), g(A,

⌊
x
m

⌋
+ 1), x −

m
⌊

x
m

⌋
) = (g(A,

⌊
x
m

⌋
), g(A,

⌊
x
m

⌋
+ 1),modmx).

• t > l + 1. It means that x ≥ m,
⌊
x
2

⌋
≥ m. Then

g(B, x) = δ′(q′0, at−1at−2 . . . a0) = δ′(δ′(q′0, at−1at−2 . . . a1), a0) =

δ′(g(B,
⌊
x
2

⌋
), a0) = δ′((g(A,

⌊
⌊ x

2 ⌋
m

⌋
), g(A,

⌊
⌊ x

2 ⌋
m

⌋
+1),modm

⌊
x
2

⌋
), a0).

If we recall that x = 2t−1at−1+· · ·+a0 andm = 2l, then we may de-

duce

⌊
⌊ x

2 ⌋
m

⌋
= 2t−1−(l+1)at−1+2t−2−(l+1)at−2+ · · ·+ al+1 =

⌊
x
2m

⌋
,

modm(
⌊
x
2

⌋
) = 2l−1al + · · ·+ 2a2 + a1. Then condition 2q + a < m

from definition of transition function δ′ becomes equivalent to con-
dition al = 0. We may note that since al is the last digit of binary
representation of number

⌊
x
m

⌋
, then

⌊
x
m

⌋
= 2

⌊
x
2m

⌋
+ al. Also we

may note that 2modm

⌊
x
2

⌋
− alm + a0 = 2(2l−1al + 2l−2al−1 · · · +

a1) − 2lal + a0 = 2l−1al−1 + · · · + 2a1 + a0 = modmx. So, if we
consider both cases when this condition is true and when it is false,
we get:

– if 2modm

⌊
x
2

⌋
+a0<m (al = 0), then: δ′((g(A,

⌊
⌊ x

2 ⌋
m

⌋
),g(A,

⌊
⌊ x

2 ⌋
m

⌋
+

1),modm

⌊
x
2

⌋
), a0) = (δ(g(A,

⌊
⌊ x

2 ⌋
m

⌋
), 0), δ(g(A,

⌊
⌊x2 ⌋
m

⌋
), 1),

2modm

⌊
x
2

⌋
+a0)=(g(A,2

⌊
⌊ x

2 ⌋
m

⌋
), g(A,2

⌊
⌊ x

2 ⌋
m

⌋
+1), 2modm

⌊
x
2

⌋
+
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a0) = (g(A, 2
⌊

x
2m

⌋
+ al), g(A, 2

⌊
x
2m

⌋
+ al + 1), 2modm

⌊
x
2

⌋
+

a0 − alm) = (g(A,
⌊

x
m

⌋
), g(A,

⌊
x
m

⌋
+ 1),modmx)

– if 2modm

⌊
x
2

⌋
+ a0 ≥ m (al = 1), then: δ′((g(A,

⌊
⌊ x

2 ⌋
m

⌋
),

g(A,

⌊
⌊ x

2 ⌋
m

⌋
+ 1),modm

⌊
x
2

⌋
), a0) = (δ(g(A,

⌊
⌊ x

2 ⌋
m

⌋
), 1),

δ(g(A,

⌊
⌊ x

2 ⌋
m

⌋
+1), 0), 2modm

⌊
x
2

⌋
+a0−m) = (g(A, 2

⌊
⌊ x

2 ⌋
m

⌋
+

1), g(A, 2(

⌊
⌊ x

2 ⌋
m

⌋
+1)), 2modm

⌊
x
2

⌋
+ a0−m) = (g(A, 2

⌊
x
2m

⌋
+

al), g(A, 2(
⌊

x
2m

⌋
+ al)), 2modm

⌊
x
2

⌋
+ a0 − alm) = (g(A,

⌊
x
m

⌋
),

g(A,
⌊

x
m

⌋
+ 1),modmx)

�

Now we have to select such set T ′ of terminal states of automaton B
that equality f(B, x) = f(A, x+ k) helds for all x ∈ N. Concerning states
q ∈ 0 . . .m− 1 everything is quite simple — according to lemma, there
is only one number that leads to this state, so we mark as terminal all
of them that satisy the condition f(A, q + k) = 1. For states of the form
(a, b, q) everything is quite more difficult. From lemma we know that if
g(B, x) = (a, b, q), then g(A,

⌊
x
m

⌋
) = a, g(A,

⌊
x
m

⌋
+ 1) = b, modmx = q.

If we recall the way binary representation of number changes after adding
k to it, we may find out that there are two cases:

• q + k < m. It means that binary representation of number x+ k is
binary representation of number

⌊
x
m

⌋
with binl(q+k) appended to it.

For such states we may select (a, b, q) ∈ T ′ ⇐⇒ δ(a, binl(q + k)) ∈
T .

• q + k ≥ m. It means that binary representation of number x + k
is binary representation of number

⌊
x
m

⌋
+ 1 with binl(q + k − m)

appended to it. For such states we may select (a, b, q) ∈ T ′ ⇐⇒
δ(b, binl(q + k −m)) ∈ T .

�

Part 3. Consider some automaton A = 〈Σ, Q, q0, δ, T 〉 and some
integer k > 1. Let B = 〈Σ′, Q′, q′0, δ

′, T ′〉 be an automaton, built using
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procedure described in previous part. Let us show that some of its states
will be merged during standard minimization process.

Let (p1, p2, q) ∈ Q′ and (p1, p
′
2, q) ∈ Q′. Let q + k < m. Since m =

2⌈log2 k⌉, then m < 2k. So, q < m − k < m − m
2 = m

2 . Since q and
m
2 are integers, then q ≤ m

2 − 1, so, 2q + 1 < m. Then by construction
δ′((p1, p2, q), a) = (δ(p1, 0), δ(p1, 1), 2q + a) for any a ∈ {0, 1}. Similarly,
δ′((p1, p′2, q), a) = (δ(p1, 0), δ(p1, 1), 2q + a). Also (p1, p2, q) ∈ T ′ ⇐⇒
δ(a, binl(q + k)) ∈ T and (p1, p

′
2, q) ∈ T ′ ⇐⇒ δ(a, binl(q + k)) ∈ T ,

i.e. for states (p1, p2, q) and (p1, p
′
2, q) transition functions coincide and

either both such states are terminal or both are non-terminal. So, during
standard minimization process this states will not be separated and stay
merged.

Let (p1, p2, q) ∈ Q′ and (p1, p
′
2, q) ∈ Q′. Let q + k > m, q <

⌊
m
2

⌋
.

Similarly to previous case δ′((p1, p2, q), a) = δ′((p1, p′2, q), a) for any a ∈
{0, 1}. So, if we consider set of all states of the form (p1, t, q), where
t ∈ Q, then during standard minimization process this set will be split
into two subsets — subset of terminal states and subset of nonterminal
states. Since for each of these subsets transition function is defined the
same way on all states in this subset and states in this subset are either
all terminal or all nonterminal, there is no way standard minimization
process may distinguish states inside one subset, so they stay all merged
after minimization process finishes.

Let (p1, p2, q) ∈ Q′ and (p1, p
′
2, q) ∈ Q′. Let q >

⌊
m
2

⌋
, 2q+k+1 < 2m.

Then δ′((p1, p2, q), a) = (δ(p1, 1), δ(p2, 0), 2q + a −m), δ′((p1, p′2, q), a) =
(δ(p1, 1), δ(p

′
2, 0), 2q + a−m) for any a ∈ {0, 1}. Since 2q + k + 1 < 2m,

then (2q + a − m) + k 6 (2q + 1 − m) + k = (2q + k + 1) − m < m.
According to first considered case, states (δ(p1, 1), δ(p2, 0), 2q+a−m) and
(δ(p1, 1), δ(p

′
2, 0), 2q+a−m) will stay merged during whole minimization

process. Then, similarly to previous case we may note that since transition
from states (p1, p2, q) and (p1, p

′
2, q) leads to the states that stay merged

during minimization process, then whole set of states (p1, t, q) will be
splited into only two subsets — subset of terminal states and subset of
nonterminal states.

So, if 2q + k + 1 < 2m, i.e. q < m − k+1
2 6 m −

⌊
k+1
2

⌋
= m −

⌈
k
2

⌉
,

then set of states {(p1, t, q)|t ∈ Q} will be merged into no more than two
states during standard minimization process. Since total amount of such
sets is n(m−

⌈
k
2

⌉
) 6 nk, then after minimization they will be merged into
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no more than 2nk states. Besides that automaton have sets of the form
(p1, p2, q), where q > m−

⌈
k
2

⌉
— there are no more than

⌈
k
2

⌉
n2 of them

in total, and also states from set {0 . . .m− 1} — there are m of them in
total, that is not greater than 2k. So, total number of states of resulting
automaton after minimization is not greater than

⌈
k
2

⌉
n2+2nk+2k, q.e.d.
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We consider power-law random graphs with N vertices. The degrees
of vertices 1, . . . , N are independent identically distributed random vari-
ables ξ1, ξ2, . . . , ξN drawn from the following law:

P{ξi ≥ k} = k−τ , (1)

where i = 1, . . . , N, k = 1, 2, . . . , τ > 0. This distribution determines the
number of stubs for each vertex, i.e. the number of edges coming out of
the vertex for which the connected vertices are not yet known. Since the
sum of vertex degrees has to be even, one stub is added to a random vertex
if the sum is odd. All stubs of vertices are numbered in an arbitrary order.
The graph is constructed by joining each stub to another equiprobably to
form edges. Such graphs are called power-law random graphs. Studies
carried out in the past decades showed that power-law random graphs are
deemed to be a good models of complex networks, e.g. Internet.

Let ζN stand for the total number of stubs, ζN = ξ1 + · · ·+ ξN . It is
clear that the number of edges in a graph is equal to ζN/2. In [1] local
limit theorems were proved for ζN as N → ∞ and any fixed τ > 0. This
parameter has two critical points: τ = 1 and τ = 2. The structure and
properties of a graph change significantly when τ = τ(N) passes these
points. We proved local limit theorems for ζN as N →∞ and τ(N)→ 2.
In particular, the next result are valid.

∗The study was carried out with financial support from the Russian Foundation for
Basic Research, grant 13-01-00009.

c© E.V. Feklistova, Yu.L. Pavlov, 2014
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Theorem Let N →∞, τ(N) = 2 + yN , yN → 0, yN lnN → 0. Then

P

{
ζN −Nζ(τ(N))√

N lnN
< x

}
→ 1√

2π

x∫

−∞

e−y2/2dy,

where ζ(τ(N)) =
∞∑
k=1

k−τ(N).
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Centro de Matemática, Faculdade de Ciências
Universidade do Porto, Porto, Portugal

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where
Q is the state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is
the totally defined transition function defining the action of the letters in
Σ on Q. The function δ is extended uniquely to a function Q× Σ∗ → Q,
where Σ∗ stands for the free monoid over Σ. The latter function is still
denoted by δ. In the theory of formal languages the definition of a DFA
usually includes the initial state q0 ∈ Q and the set F ⊆ Q of terminal
states. We will use this definition when dealing with automata as devices
for recognizing languages. A language L ⊆ Σ∗ is recognized (or accepted)
by an automaton A = 〈Q,Σ, δ, q0, F 〉 if L = {w ∈ Σ∗ | δ(q0, w) ∈ F}. We
denote by L[A ] the language accepted by the automaton A .

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word
w ∈ Σ∗ whose action leaves the automaton in one particular state no
matter at which state in Q it is applied, i.e., δ(q, w) = δ(q′, w) for all
q, q′ ∈ Q. Any word w with this property is said to be reset for the DFA
A . For the last 50 years synchronizing automata received a great deal of
attention. In 1964 Černý conjectured that every synchronizing automaton
with n states possesses a reset word of length at most (n − 1)2. Despite

c© M. Maslennikova, E. Rodaro, 2014
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intensive efforts of researchers this conjecture still remains open. For a
brief introduction to the theory of synchronizing automata we refer the
reader to the survey [5].

Recently, in a series of papers [2, 4, 9, 6] a language theoretic ap-
proach to the study of synchronizing automata has been developed. In
this abstract, we summarize some known facts from the above papers and
present some new results. We denote by Syn(A ) the language of synchro-
nizing words for a given synchronizing automaton A . It is well known
that Syn(A ) is regular [5]. Furthermore, it is a two-sided ideal (or simply
an ideal) in Σ∗, i.e., Syn(A ) = Σ∗ Syn(A )Σ∗. On the other hand, every
two-sided regular ideal language L serves as a language of synchronizing
words for some automaton. For instance, the minimal automaton of the
language L is synchronized by L [2]. Thus synchronizing automata can
be considered as a special representation of ideal languages. The com-
plexity of such a representation is measured by the reset complexity rc(L)
which is the minimal possible number of states in a synchronizing au-
tomaton A such that Syn(A ) = L. Every such automaton A is called
minimal synchronizing automaton (for brevity, MSA). Let sc(L) be the
state complexity of L, i.e. the number of states in the minimal automaton
recognizing L.

For every ideal language L we have rc(L) ≤ sc(L) (since the minimal
automaton is synchronized by L). Moreover, there are languages Ln for
every n ≥ 3 such that rc(Ln) = n and sc(Ln) = 2n − n, see [2]. Thus
representation of an ideal language by means of one of its MSA can be
exponentially smaller than its “traditional” representation via minimal
automaton. However, no reasonable algorithm is known for computing
an MSA of a given language. One of the obstacles is that MSA is not
uniquely defined. Furthermore, the problem of checking, whether a given
synchronizing automaton with at least 5 letters is an MSA for a given
ideal language, has recently been shown to be PSPACE-complete[6].

Another source of motivation for studying representations of ideal lan-
guages by means of synchronizing automata comes from the aforemen-
tioned Černý conjecture [2]. We can restate the Černý conjecture in terms
of reset complexity as follows. If ||L|| is the minimal length of words in
an ideal language L then rc(L) ≥

√
||L|| + 1. Actually, even a lower

bound rc(L) ≥
√
||L||/c, for some constant c > 0, would be a major

breakthrough for this conjecture. Thus a deeper understanding of reset
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complexity may help to shed light on this longstanding conjecture. In this
language theoretic approach to Černý conjecture, strongly connected syn-
chronizing automata play an important role. Since the Černý conjecture
holds true whenever it holds true for strongly connected automata, an
important issue, risen in [4], is the problem of finding strongly connected
synchronizing automaton whose set of reset words is equal to a given ideal
language L. Indeed, while the minimal automaton recognizing an ideal
language L is always a synchronizing automaton with a unique sink state
(i.e. a state fixed by all letters), finding example of strongly connected
synchronizing automata A with Syn(A ) = L is non-trivial task. In [9] it
is proved that such an automaton always exists. The construction itself
is non-trivial and rather technical. Furthermore, the upper bound on the
number of states of the associated strongly connected automaton is very
big.

Theorem 1 Let I be an ideal language such that IR (the ideal obtained
applying the reversal operator) has state complexity n. Then there is a
strongly connected synchronizing automata B with N states and Syn(B) =
I such that:

N ≤ mk2n

(
n∑

t=2

m(nt)

)2n

where k = |Σ| and m =
(

n2+n
2 + 1

)
.

The approach of [9] has the extra advantage of detaching Černý conjecture
from the automata point of view. This is achieved by introducing a purely
language theoretic notion of reset left regular decomposition of an ideal.
We refer the reader to that paper for the definition of such decompositions
and the details of the connection between decompositions of an ideal lan-
guage and the Černý conjecture. Here we just note that the cardinality of
the smallest reset left regular decomposition of an ideal L is equal to the
size of the smallest strongly connected synchronizing automaton having
L as the language of reset words. Furthermore, if we denote this common
value by rdc(L), then rc(L) ≤ rdc(L), and Černý conjecture holds if and
only if rdc(L) ≥

√
||L|| + 1. Therefore, it is clear how important it is

to study some issues like finding more effective constructions of these de-
compositions (or equivalently their associated automata), or to find more
precise upper and lower bounds of rdc(L). The first attempts to approach
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these questions has been made in [4], where it is considered the particular
case of a principal ideal languages, i.e. a languages of the form Σ∗wΣ∗,
for some word w ∈ Σ∗. Namely, the following theorem holds.

Theorem 2 For the language Σ∗wΣ∗ there is a strongly connected au-
tomaton B with |w| + 1 states, such that Syn(B) = Σ∗wΣ∗. Such an
automaton can be constructed in O(|w|2) time.

Here, we provide a new result stating that the automaton B from the
above theorem is in fact an MSA. More precisely, we have the following
theorem.

Theorem 3 Let I = Σ∗wΣ∗ be a principal ideal language, then rdc(I) =
rc(I) = |w|+ 1.

We also study principal left ideals, i.e. ideals of the form Σ∗w for
some word w. Such left ideals seem to play an important role in the
Černý conjecture and the theory of synchronizing automata. Indeed, we
characterize strongly connected automata via homomorphic images of au-
tomata belonging to a particular class of automata recognizing languages
of the form w−1Σ∗w = {u | wu ∈ Σ∗w} for some w ∈ Σ∗. Namely,
consider the class L(Σ) of all trim automata A = 〈Q,Σ, δ, q0, {q0}〉 such
that L[A ] = w−1Σ∗w for some word w ∈ Σ∗. We recall that a DFA
A = 〈Q,Σ, δ, q0, {q0}〉 is called trim whenever each state q ∈ Q is acces-
sible from q0 and q0 is accessible from each state q ∈ Q. Note that the
following fact holds.

Lemma 1 Let A ∈ L(Σ) with L[A ] = w−1Σ∗w. Then A is a strongly
connected synchronizing automaton with w ∈ Syn(A ).

We recall that a homomorphism ϕ : A → B of automata is a map
between the sets of states preserving the action of the two automata.
Similarly, a congruence is an equivalence relation on the set of states
which is compatible with the action of the letters. We have the following
theorem.

Theorem 4 Let A = 〈Q,Σ, δ〉 be a strongly connected synchronizing au-
tomaton. For any synchronizing word w ∈ Syn(A ) of minimal length
there is a DFA B ∈ L(Σ) with L[B] = w−1Σ∗w and

Σ∗wΣ∗ ⊆ Syn(B) ⊆ Syn(A )
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such that A is a homomorphic image of B.

From which we derive the following

Corollary 1 The class of strongly connected synchronizing automata are
all and only all the homomorphic images of the class L(Σ) formed by the
trim automata A = 〈Q,Σ, δ, {q0}, q0〉 such that L[A ] = w−1Σ∗w for some
word w ∈ Σ∗.

By Congk(B) we mean the (maybe empty) set of all congruences of au-
tomaton B of index k. Using Theorem 4 we can give another reformula-
tion of the Černý conjecture using the automata from the class L(Σ).

Theorem 5 Cerny’s conjecture holds if and only if for any B ∈ L(Σ)
and ρ ∈ Congk(B) for all k <

√
‖ Syn(B)‖ + 1 we have

‖ Syn(B/ρ)‖ < ‖ Syn(B)‖

In this regard we initiate the study of automata recognizing languages
of the form w−1Σ∗w for some w ∈ Σ∗. In what follows we will assume
that |Σ| > 1. For a given word w of length |w| = n one may construct
an n-state DFA Aw = 〈P (w),Σ, δ, qn, {qn}〉, where P (w) = {q0, . . . , qn}
is the set of all prefixes of w including the empty word and the whole
w. Let us assume that, for all i, |qi| = i. The transition function δ is
defined in such way that δ(qi, a) = qj for some i, j if and only if qj is
the maximal suffix of qia that appears in w as a prefix. We prove the
following proposition.

Proposition 1 Aw is the minimal DFA recognizing the language

L[Aw] = w−1Σ∗w (1)

It it turns out that Aw is a finitely generated synchronizing automaton,
i.e. Syn(Aw) = Σ∗UΣ∗ for some finite set of words U (for more details on
finitely generated synchronizing automata see [8]). Furthermore, it can be
easily seen that w ∈ Syn(Aw). Now, in this context, we have that a word of
the language recognized by the automaton is also a synchronizing word.
Thus it is quite natural to ask in which cases the minimal automaton
recognizing a given regular language L is synchronized by some word
from L. Here we answer this question. Moreover, we prove a criterion for
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the minimal automaton recognizing L to be synchronized by some word
from L. We state this criterion in terms of the notion of a constant of
L introduced by Schützenberger. Let L ⊆ Σ∗ be a regular language. A
word w ∈ Σ∗ is a constant for L if the implication

u1wu2 ∈ L, u3wu4 ∈ L⇒ u1wu4 ∈ L

holds for all u1, u2, u3, u4 ∈ Σ∗. We denote the set of all constants of
L by C(L). As it is mentioned in [10], the set C(L) contains the ideal
Z(L) = {w | Σ∗wΣ∗ ∩ L = ∅}. The notion of a constant is widely studied
and finds applications in bioinformatics and coding theory [1, 5].

Constant words of a regular language L satisfy the property contained
in Lemma 2 which has also been reported in [10].

Lemma 2 Let L ⊆ Σ∗ be a regular language and let A be its minimal
automaton with the state set Q and transition function δ. A word w ∈ Σ∗

is a constant for L if and only if |δ(Q,w)| ≤ 1.

By this lemma it follows that if the automaton A is complete, then
w ∈ Σ∗ is a constant of L if and only if w is a reset word for A . Denote
by L = L = Σ∗ \ L. Recall that a language L ⊆ Σ∗ is a right ideal if it
is non-empty and LΣ∗ ⊆ L. We have the following characterization for
the minimal automaton recognizing the language L to be synchronizing
by some word of L.

Theorem 6 The minimal automaton A recognizing a language L is syn-
chronizing and L ∩ Syn(A ) 6= ∅ if and only if the following properties
hold:

(i) C(L) 6= ∅;
(ii) L does not contain right ideals.

Since the problem of checking whether or not L does not contain right
ideals is polynomial time task, to understand the cost of checking the
conditions of Theorem6 we need to study the following CONSTANT
problem:

–Input: a regular language L over Σ, its minimal automaton A .
–Question: is C(L) 6= ∅?

By Lemma 2 it is clear that the complex case is when A is a partial
automaton, or equivalently, A contains a non-accepting sink state s. In
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this case it remains to check whether or not A is synchronizing in the
following sense: there exists a word w mapping the state set Q to two-
element subset {s, qw} for some qw 6= s. We show that this task can be
solved in polynomial time. Whence, we get the following result.

Theorem 1 CONSTANT can be solved in polynomial of n time.

Now it is quite natural to ask how hard it is to check that there exists
a constant of L of length at most ℓ, for some positive integer number
ℓ. Again it is sufficient to consider only the case where A contains a
non-accepting sink state s. We state formally the following SHORT-
CONSTANT problem:

–Input: a DFA with a unique sink state s, positive integer number ℓ.
–Question: does there exist a word w of length at most ℓ bringing A

to some subset of size at most two?

Proposition 2 SHORT-CONSTANT is NP-complete.

The proof of this last statement follows by a similar construction used
in [3] to prove the NP-completeness of the problem of checking whether
a given DFA is synchronized by some word of length at most ℓ.
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Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where
Q is the state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is
the totally defined transition function defining the action of the letters in
Σ on Q. The function δ is extended uniquely to a function Q× Σ∗ → Q,
where Σ∗ stands for the free monoid over Σ. The latter function is still
denoted by δ. In the theory of formal languages the definition of a DFA
usually includes the initial state q0 ∈ Q and the set F ⊆ Q of terminal
states. We will use this definition when dealing with automata as devices
for recognizing languages. A language L ⊆ Σ∗ is recognized (or accepted)
by an automaton A = 〈Q,Σ, δ, q0, F 〉 if L = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word
w ∈ Σ∗ whose action leaves the automaton in one particular state no
matter at which state in Q it is applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q.
Any word w with this property is said to be reset for the DFA A . For the
last 50 years synchronizing automata received a great deal of attention. In
1964 Černý conjectured that every synchronizing automaton with n states
possesses a reset word of length at most (n−1)2. Despite intensive efforts
of researchers this conjecture still remains open. For a brief introduction
to the theory of synchronizing automata we refer the reader to the recent
surveys [5, 4].

In the present paper we focus on some complexity aspects of the theory
of synchronizing automata. We denote by Syn(A ) the language of reset

∗The author acknowledges support from the Presidential Programm for young re-
searchers, grant MK-3160.2014.1.
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words for a given automaton A . It is well known that Syn(A ) is regu-
lar [5]. Furthermore, it is an ideal in Σ∗, i.e. Syn(A ) = Σ∗ Syn(A )Σ∗.
On the other hand, every regular ideal language L serves as the language
of reset words for some automaton. For instance, the minimal automaton
recognizing L is synchronized exactly by L [2]. Thus synchronizing au-
tomata can be considered as a special representation of an ideal language.
Effectiveness of such a representation was addressed in [2]. The reset
complexity rc(L) of an ideal language L is the minimal possible number
of states in a synchronizing automaton A such that Syn(A ) = L. Ev-
ery such automaton A is called a minimal synchronizing automaton (for
brevity, MSA). Let sc(L) be the number of states in the minimal automa-
ton recognizing L. For every ideal language L we have rc(L) ≤ sc(L) [2].
Moreover, there are languages Ln for every n ≥ 3 such that rc(Ln) = n
and sc(Ln) = 2n− n [2]. Thus the representation of an ideal language by
means of a synchronizing automaton can be exponentially more succinct
than the “traditional” representation via the minimal automaton. How-
ever, no reasonable algorithm is known for computing an MSA of a given
language. One of the obstacles is that an MSA is not uniquely defined.
For instance, there is a language with at least two different MSAs [2].

Let L be an ideal regular language over Σ with rc(L) = n. The
latter equality means that there exists some n-state DFA B such that
Syn(B) = L, and B is an MSA for L. Now it is quite natural to ask the
following question: how hard is it to verify the condition Syn(B) = L?
It is well known that the equality of the languages accepted by two given
DFAs can be checked in polynomial of the size of automata time. However,
the problem of checking the equality of the languages of reset words of
two synchronizing DFAs turns out to be hard. Moreover, it is hard to
check whether one particular ideal language serves as the language of
reset words for a given synchronizing automaton. We state formally the
SYN-EQUALITY problem:

–Input: synchronizing automata A and B.
–Question: is Syn(A ) = Syn(B)?
One may notice now that the problem SYN-EQUALITY can be solved

by the following naive algorithm. Indeed, we construct the power au-
tomata P(A ) and P(B) for DFAs A and B. Now it remains to verify
that automata P(B) and P(A ) accept the same language. However, the
automaton P(A ) has 2n − n states, where n is the number of states in
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the DFA A . So we cannot afford to construct directly the corresponding
power automata. Now we state formally the SYN-INCLUSION problem.
We show that SYN-INCLUSION is in PSPACE. For more information
about different complexity classes and classical computational problems
we refer the reader to the source [3].

SYN-INCLUSION
–Input: synchronizing automata A and B.
–Question: is Syn(A ) ⊆ Syn(B)?

Theorem 1 SYN-INCLUSION is in PSPACE.

Since SYN-INCLUSION belongs to the class PSPACE, we obtain
that SYN-EQUALITY is in PSPACE as well. We prove that SYN-
EQUALITY is a PSPACE-complete problem. Actually, we prove a
stronger result, that it is a PSPACE-complete problem to check whether
the language Syn(A ) for a given automaton A coincides with the lan-
guage Syn(B) for some particular automaton B. The automaton B pos-
sesses just three states. Furthermore, it is an MSA for the language
Syn(B). So we have the following theorem.

Theorem 2 SYN-EQUALITY is PSPACE-complete.

To prove that SYN-EQUALITY is a PSPACE-complete problem we
reduce the following classical PSPACE-complete problem to the comple-
ment of SYN-EQUALITY. This problem deals with checking emptiness of
the intersection of languages accepted by DFAs from a given collection [1].

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi,Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i L[Mi] 6= ∅?

Let us notice that the Theorem 2 holds for automata over at least
binary alphabet. Checking the equality of languages of reset words of two
synchronizing automata over unary alphabet can be done in polynomial
time. Now it is interesting to consider the SYN-STRICT-INCLUSION
problem:

–Input: synchronizing automata A and B.
–Question: is Syn(A ) ( Syn(B)?

Theorem 3 SYN-STRICT-INCLUSION is PSPACE-complete.
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So the problem of constructing an MSA for a given ideal language is
unlikely to be an easy task. Also we prove that the problem of checking
the inequality rc(L) ≤ ℓ, for a given positive integer number ℓ, is in
PSPACE. Here an ideal language L is presented by a DFA, for which
L serves as the language of reset words. Let us note that checking the
equality rc(L) = 1 or rc(L) = 2 is trivial. However, the problem of
checking the inequality rc(L) ≤ 3 turns out to be hard.

Theorem 4 Let L be an ideal language and A a synchronizing DFA
with at least 5 letters such that Syn(A ) = L. The problem of checking the
inequality rc(L) ≤ 3 is PSPACE-complete.
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Introduction

Questions about connection between the chromatic number of a graph
and the existence of its drawing on some surface are among oldest prob-
lems of graph theory. For example, the 4 Color Conjecture ([1]-[3]), which
is one of the most famous problems. P. J. Heawood [6] has found an upper
bound on the chromatic number of a graph, that can be drawn without
intersections on a surface of genus g (g ≥ 1): it was shown that the chro-

matic number of such graph does not exceed 7+
√
1+48g
2 . Moreover, it was

also shown [8], that this bound is tight.
Another well-known formulation of this problem is one for the dual

graph, where the vertices are faces of the initial map (regions) and to
faces are adjacent if and only if they have common part of boundary. We
consider proper colorings of faces, i.e. such coloring that adjacent faces
have different colors.

An equivalent formulation of this problem is as follows. Let the map
on a surface is such that no 4 faces have a common point and we color
faces such that faces having a common point must have different colors.
(Clearly, two faces can have a common only on their common boundary).

We generalize this problem and consider the condition “any k faces
have no common point” (or, what is the same, “no k maps are tangent
to each other at same point”) instead of “any 4 faces have no common
point” in classic one.

Definition 1 Let k and g be nonnegative integers. Let us denote by Bk,g
the class of all maps on the surface of genus g such that any k + 1 faces
have no common point.

c© G. Nenashev, 2014



On Heawood-Type Problems for Maps with Tangencies 127

Definition 2 Let k be a nonnegative integer. We say that a graph is k-
planar, if it can be drawn on the plane such that any edge intersects at
most k other edges.

In [4] O.V.Borodin found tight bound on the chromatic number for
1-planar graphs. The chromatic number of such graphs does not exceed 6,
and, clearly, this bound is attained (for exampple, the complete graph K6

is 1-planar).

Definition 3 Let k and g be nonnegative integers. Let us denote by Ak,g

the class of all graphs without loops and multiple edges which can be drawn
on a surface of genus g, such that any edge intersects not more than k
other edges.

We denote by χ(Ak,g) and χ(Bk,g) the maximal chromatic number of
a graph from the corresponding class.

In [5] the following bound was proved:

χ(A1,g) ≤
9 +
√
17 + 64g

2
.

Now we improve this bound and prove that χ(A1,g) = χ(B4,g).
Moreover, we construct nontrivial examples confirming that our bounds

are tight. For this purpose we use the ideas of ribborn graphs and Kirch-
hoff’s graphs.

Moreover, we prove that χ(Bk,g) ≤ 2k+1+
√

4k2−12k+16gk+1

2 and χ(B5,g) ≤
χ(A2,g) ≤ 11+

√
41+80g
2 .
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We use the following defenitions:
Ek = {0, . . . , k − 1}, En

k = Ek × Ek . . .× . . . Ek︸ ︷︷ ︸
n times

.

Denote by Pk the set of all functions f : En
k → Ek and by Pk,2 the set

of all functions of the form f : En
k → E2.

For a formula Φ over a finite system of functions from Pk we define
two measures: by L(Φ) we denote the number of occurrences of variables
symbols in Φ (the complexity of the formula Φ) , and by l(Φ) we denote
the depth of the formula Φ . We can define l(Φ) inductively:
1) if Φ consists of a single symbol (of variable or of constant), then l(Φ) =
0;
2) if Φ = f(Φ1, . . . ,Φn), then l(Φ) = (maxi=1,...,n l(Φi)) + 1 .

Let A be a finite system of functions from Pk,2. For the function
f ∈ [A], we define

lA(f) = min(l(Φ)) , LA(f) = min(L(Φ)),

the minimum is taken over all formulas Φ, Φ′ over A, realizing f .
The system of functions A will be called a uniform system if constants

c and d exist such that for any function f ∈ [A] we have the inequality

lA(f) ≤ c log2 LA(f) + d,

(see definitions in [3]).

c© P. Tarasov, 2014
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Khrapchenko has shown (see [4,5]) that all complete systems of boolean
functions are uniform, the same result has been obtained in [7]. Wegener
[6] proved, that all finite systems generating the class of all monotone
Boolean functions are uniform. Ugol’nikov (see [3,8]) proved that all finite
systems of boolean functions are uniform. Also, examples of non-uniform
systems of many-valued logic are provided in this work. The same results
has been obtained in [9]. Safin has shown (see [10]) uniformity for some
finite systems generating some closed classes of many valued logic. This
results were generalized by author in [11]. Moreover, in this work some
sufficient conditions of uniformity of finite systems of functions from Pk,2

were obtained.
Let f(x1, . . . , xn) be a function from Pk,2. A function g(x1, . . . , xn) ∈

P2, is called the ”projection” of f if for all α̃ ∈ En
2 we have the equality

f(α̃) = g(α̃). We denote the projection of function f by pr(f). In the
same way, if A is a system of function from Pk,2, denote pr(A) =

⋃
f∈A

pr(f)

(see more definitions in [1]).
Let f(x1, . . . , xn) ∈ Pk,2, i ∈ {1, . . . , n}. Denote

Mxi

f = {prf(α1, . . . , αi−1, x, αi, . . . , αn−1)|α̃ ∈ En−1
k },

V xi

f = {α̃|α̃ ∈ En−1
k , prf(α1, . . . , αi−1, y, αi, . . . , αn−1) = x}.

Let A be a finite system of monotone functions from Pk,2. We will
say than A has property #, if q ≥ 3 exists, such that for any func-
tion f(x1, . . . , xn) ∈ A, any i ∈ {1, . . . , n} and any α̃ ∈ V xi

f , there exists
function g(x1, . . . , xi−1, xi+1, . . . , xn, y1, . . . , yq) ∈ [A], such that for any

β̃ ∈ V xi

f , we have prg(β̃, ỹ) 6∈ [{0, 1}] and

1. if {0, x} ∈Mxi

f , then prg(α̃, ỹ) ∈M01 \O∞;

2. if {1, x} ∈Mxi

f , then prg(α̃, ỹ) ∈M01 \ I∞.

By q(A) we will denote minimal such number q.

We denote a partial order relation on Ek as follows: 1 ≥ 0, and all
other elements of Ek are incomparable. Futher, in this paper by monotone
functions we will mean functions preserving this partial order relation.
Note, that if f ∈ Pk,2 is a monotone function, prf is a monotone boolean
function.
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The main results of this work are these statements:
Theorem 1. A finite system of monotone functions from Pk,2 is

uniform only if it has property #.

Theorem 2. Let A be a finite system of monotone functions from
Pk,2, such that A has property #. Than constants c and d exists, such
that for any function f ∈ [A] we have lA(f) ≤ c log2 LA(f) + d.

Theorem 3. Let A be a finite system of monotone functions from
Pk,2, A has property # and functions from A depends on no more than n
variables. Than q(A) ≤ nkn

.
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On Connection between Permutation

Complexity and Factor Complexity

of Infinite Words

Alexandr Valyuzhenich

Sobolev Institute of Mathematics, Novosibirsk, Russia

The notion of an infinite permutation was introduced in [1], where
the periodic properties and low complexity of permutations were investi-
gated. The notion of a permutation generated by an infinite non-periodic
word and the notion of the permutation complexity of infinite word was
introduced in [2]. In [3] Makarov calculated the permutation complexity
of a well-known family of Sturmian words. In [5] Widmer calculated the
permutation complexity of the Thue-Morse word.

For a word ω = ω1ω2ω3 . . . over the alphabet Σ = {0, 1} we define the
binary real number Rω(i) = 0, ωiωi+1 . . . =

∑
k≥0 ω(i+ k)2−(k+1). Let ω

be a right infinite nonperiodic word over the alphabet Σ. We define the
infinite permutation generated by the word ω as follows: δ = 〈N, <δ, <〉,
where <δ and < are linear orders on N. The order <δ is defined as follows:
i<δj if and only if Rω(i) < Rω(j), and < is the natural order on N. Since
ω is a non-periodic word, all Rω(i) are distinct, and the definition above
is correct. We say that a permutation π = π1 . . . πn of {1, 2, . . . , n} is a
subpermutation of length n of an infinite permutation δ if there exist i
such that the numbers Rω(i + 1), . . . , Rω(i + n) form the linear order is
equal to π. Now we define the permutation complexity λ(n) of the word
ω (or equivalently, the factor complexity of the permutation δω) as the
number of its distinct subpermutations of length n. Recall that the factor
complexity C(n) of word ω is the number of its distinct subwords of length
n.

In [2] was proved that λ(n) ≥ C(n− 1). For Sturmian words we have
equality λ(n) = C(n− 1) = n.

c©A. Valyuzhenich, 2014
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The main result of this paper is that equality λ(n) = C(n− 1) holds for
uniformly recurrent word ω if and only if ω is a Sturmian word. Moreover
we obtain an alternative way to prove that λ(n) = n for Sturmian words.

Theorem 2 Let ω be an infinite uniformly recurrent word. Then λ(n) =
C(n− 1) if and only if ω is a Sturmian word.

References

[1] D.G. Fon-Der-Flaass and A.E. Frid. On periodicity and low complexity
of infinite permutations. European J. Combin., 28(8):2106-2114, 2007.

[2] M.A. Makarov. On permutations generated by infinite binary words.
Sib. Elektron. Mat. Izv., 3:304-311, 2006. (in Russian).

[3] M.A. Makarov. On the permutations generated by the Sturmian
words. Sib. Math. J., 50(3):674-680, 2009.

[4] A. Valyuzhenich. Permutation complexity of the fixed points of some
uniform binary morphisms // EPTCS 63 (2011), Proceedings of
WORDS 2011, p. 257-264.

[5] S. Widmer. Permutation complexity of the Thue-Morse word. Adv. in
Appl. Math. 47(2), pp. 309-329, 2011.



Н а у ч н о е и з д а н и е

Третий

Российско-Финский симпозиум

по дискретной математике

Расширенные тезисы докладов

Печатается по решению Ученого совета

Федерального государственного бюджетного учреждения науки

Института прикладных математических исследований

Карельского научного центра

Российской академии наук


