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Abstract

We study the multi-selection version of the so-called odds theorem by Bruss [3].

We observe a finite number of independent 0/1 (failure/success) random

variables sequentially and want to select the last success. We derive the optimal

selection rule when m (≥ 1) selection chances are given and find that the

optimal rule has the form of a combination of multiple odds-sums. We provide

a formula for computing the maximum probability of selecting the last success

when we have m selection chances and also provide closed-form formulas for

m = 2 and 3. For m = 2, we further give the bounds for the maximum

probability of selecting the last success and derive its limit as the number of

observations goes to infinity. An interesting implication of our result is that

the limit of the maximum probability of selecting the last success for m = 2 is

consistent with the corresponding limit for the classical secretary problem with

two selection chances.
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1. Introduction

For a positive integer N , let X1, X2, . . . , XN denote independent 0/1 random

variables defined on a probability space (Ω,F ,P). We observe these Xi’s

sequentially and claim that the ith trial is a success if Xi = 1. The problem lies

in finding a rule τ ∈ T to maximize the probability of selecting the last success,

where T is the class of all selection rules such that {τ = j} ∈ σ(X1, X2, · · · , Xj);

that is, the decision of whether to select the jth success depends on the

information up to j. Let N = {1, 2, . . . , N} and let pi = P(Xi = 1) and

qi = 1 − pi = P(Xi = 0) for i ∈ N , where we leave out the trivial case and

assume that there exists at least one i ∈ N such that pi > 0. In addition, let

ri, i ∈ N , denote the odds of the ith trial; that is, ri = pi/qi, where we set

ri = +∞ if pi = 1. When exactly one selection chance was allowed, Bruss [3]

solved the problem with elegant simplicity as follows.

Proposition 1.1. (Theorem 1 in Bruss [3].) Suppose that exactly one selection

chance is given in the problem above. Then, the optimal selection rule τ
(1)
∗

selects the first success after the sum of the future odds becomes less than one;

that is,

τ
(1)
∗ = min

{
i ≥ i

(1)
∗ : Xi = 1

}
, (1.1)

i
(1)
∗ = min

{
i ∈ N :

N∑
j=i+1

rj < 1
}

, (1.2)

where min(∅) = +∞ and
∑b

j=a · = 0 when b < a conventionally. Furthermore,

the maximum probability of “win” (selecting the last success) is given by

P (1)(win) = P
(1)
N (p1, . . . , pN ) =

N∏
k=i

(1)
∗

qk

N∑
k=i

(1)
∗

rk. (1.3)

This result, referred to as the sum-the-odds theorem or odds theorem in short,

is attractive because it can be applied to many basic optimal stopping problems

such as betting, the classical secretary problem (CSP) and the group-interview
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secretary problem proposed by Hsiau and Yang [11]. Bruss [3] also proved

that P (1)(win) in (1.3) is bounded below by R(1) e−R(1)
with R(1) =

∑N
j=i

(1)
∗

rj .

Remarkably, in [4], he found that it is bounded below by e−1 when
∑N

j=1 rj ≥ 1.

These results generalize the known lower bounds for the CSP, where each pi

has the specific value of pi = 1/i for i ∈ N (e.g., Hill and Krengel [10]).

After Bruss [3], which includes the problem with random number of

observations, the odds theorem has been extended in several directions. Bruss

and Paindaveine [5] extended it to the problem of selecting the last ` (> 1)

successes. Hsiau and Yang [12] considered the problem with Markov-dependent

trials. Recently, Ferguson [8] extended the odds theorem in several ways, where

infinite number of trials are allowed, the payoff for not selecting till the end is

different from the payoff for selecting a success that is not the last, and the

trials are generally dependent. Furthermore, he applied his extension to the

stopping game of Sakaguchi [14].

In this paper, we consider yet another extension of the result by Bruss [3];

that is, we are interested in the problem with multiple selection chances. In

our first main result, we derive the optimal rule for the problem of selecting

the last success with m (∈ N ) selection chances and express the optimal rule

as a combination of multiple odds-sums. Our extension is applied to the multi-

selection versions of the problems to which the odds theorem can be applied

(e.g., the CSP with multiple selection chances in Gilbert and Mosteller [9] and

Sakaguchi [13]). In our second main result, we provide a formula for computing

the probability of win for the problem with m (∈ N ) selection chances and

provide the closed-form formulas for m = 2 and 3. Furthermore, we give the

lower and upper bounds for the maximum probability of win for m = 2 and

derive its limit as N → ∞ under some condition on pi, i ∈ N . This limit of the

maximum probability of win is consistent with the known limit e−1 + e−3/2 for

the CSP with two selection chances (e.g., Gilbert and Mosteller [9], Bruss [2],

and Ano and Ando [1]).
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This paper is organized as follows. In Section 2, we consider the optimal

rule for the problem of selecting the last success with m (∈ N ) selection

chances. Our approach is essentially based on the technique of Ano and

Ando [1], in which they studied the condition for the monotone (equivalent,

one-step look-ahead) selection rule to be optimal in multiple selection problems.

For more details on the monotone selection problem, refer to Chow et al. [6]

or Ferguson [7]. In Section 3, we derive some formulas for the maximum

probability of win. We give the bounds for the maximum probability of win

for m = 2 and derive its limit as N → ∞ under some condition on pi, i ∈ N .

Finally, we conclude the paper by making conjectures on the limits of the

maximum probability of win for m ≥ 3 and on the lower bound for m ≥ 2.

2. Multiple sum-the-odds theorem

Suppose that we are given m (∈ N ) selection chances in the problem

described in the preceding section. Let V
(m)
i , i ∈ N , denote the conditional

maximum probability of win provided that we observe Xi = 1 and select this

success when we have at most m selection chances left. Let W
(m)
i , i ∈ N ,

denote the conditional maximum probability of win provided that we observe

Xi = 1 and ignore this success when we have at most m selection chances left.

Furthermore, let M
(m)
i , i ∈ N , denote the conditional maximum probability of

win provided that we observe Xi = 1 and decide whether to select when we

have at most m selection chances left. The optimality equation for each m ∈ N

is then given by

M
(m)
i = max{V (m)

i , W
(m)
i }, i ∈ N . (2.1)

Clearly, if m > N − i (the remaining selection chances are more than the

remaining observations) and we observe Xi = 1, then the decision to select

results in win with probability 1, so that M
(m)
i = V

(m)
i = 1 for i > N − m. In

particular, we have M
(m)
N = V

(m)
N = 1 and W

(m)
N = 0 for any m ∈ N .

We observe that V
(m)
i is represented as the sum of two conditional probabil-
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ities; the first is that no success appears in i + 1, . . . , N provided that Xi = 1

and the second is that we finally win in starting at i + 1 with m − 1 selection

chances provided that Xi = 1. Since the latter conditional probability is equal

to W
(m−1)
i , we have for each m ∈ N ,

V
(m)
i = P(Xi+1 = Xi+2 = · · · = XN = 0 | Xi = 1) + W

(m−1)
i

=
N∏

j=i+1

qj + W
(m−1)
i , i ∈ N , (2.2)

where we set W
(0)
i := 0 for i ∈ N and

∏b
j=a · = 1 when b < a conventionally.

The second equality provided above follows from the independence of the Xi’s.

On the other hand, W
(m)
i is given as the conditional probability with which

we finally win when we make the optimal decision at the first success after

iprovided that Xi = 1, so that, for each m ∈ N ,

W
(m)
i =

N∑
j=i+1

P(Xi+1 = · · · = Xj−1 = 0, Xj = 1 | Xi = 1) M
(m)
j

=
N∑

j=i+1

( j−1∏
k=i+1

qk

)
pj M

(m)
j , i ∈ N . (2.3)

As a preparatory step in studying the problem with multiple selection

chances, we hereby provide another proof of the odds theorem (Proposition 1.1)

using the notion of the monotone stopping rule in Chow et al. [6].

Another Proof of Proposition 1.1. We prove only the first part of Proposi-

tion 1.1. The monotone selection region for the single selection problem is

given by B(1) := {i ∈ N : G
(1)
i > 0}, where

G
(1)
i := V

(1)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(1)
j , i ∈ N . (2.4)

Note that B(1) is the region of i ∈ N such that the probability of win by

selecting Xi = 1 is greater than that by ignoring Xi = 1 and then selecting

the first success after Xi. ¿From (2.2), we have V
(1)
i =

∏N
j=i+1 qj and, if there
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exists j ∈ {i + 1, . . . , N} such that qj = 0, then (2.4) leads to G
(1)
i ≤ 0. On the

other hand, if qj > 0 for all j = i + 1, . . . , N , then (2.4) is written as

G
(1)
i =

N∏
j=i+1

qj −
N∑

j=i+1

( j−1∏
k=i+1

qk

)
pj

( N∏
k=j+1

qk

)

=
N∏

j=i+1

qj

(
1 −

N∑
j=i+1

rj

)
. (2.5)

Therefore, if G
(1)
i > 0 for some i ∈ N , then qj > 0 for all j = i + 1, . . . , N and

(2.5) gives
∑N

j=i+1 rj < 1. Conversely, if
∑N

j=i+1 rj < 1 for some i ∈ N , then

qj > 0 for all j = i + 1, . . . , N and (2.5) gives G
(1)
i > 0. Namely, G

(1)
i > 0 is

equivalent to
∑N

j=i+1 rj < 1 and B(1) is given by

B(1) =
{

i ∈ N :
N∑

j=i+1

rj < 1
}

.

Since
∑N

j=i+1 rj is clearly nonincreasing in i, B(1) is “closed” in the sense of the

monotone problem in Chow et al [6]; that is, i ∈ B(1) implies that j ∈ B(1) for

all j = i, i + 1, . . . , N . Hence, the optimal rule for the single selection problem

is given by (1.1) and (1.2).

We can now state the optimal rules for the multiple selection problem.

Theorem 2.1. Suppose that we have at most m (∈ N ) selection chances.

Then, the optimal selection rule τ
(m)
∗ is given by

τ
(m)
∗ = min{i ≥ i

(m)
∗ : Xi = 1}, (2.6)

i
(m)
∗ = min{i ∈ N : H

(m)
i > 0}, (2.7)

where min(∅) = +∞ and for each i ∈ N , H
(m)
i , m ∈ N , are recursively defined

by

H
(1)
i := 1 −

N∑
j=i+1

rj , (2.8)

H
(m)
i := H

(1)
i +

N∑
j=(i+1)∨i

(m−1)
∗

rj H
(m−1)
j , m = 2, 3, . . . , N, (2.9)
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with a∨b = max{a, b} for a, b ∈ R. In (2.9), if there exists a j ∈ {i+1, . . . , N}

such that pj = 1 (that is, rj = +∞), then we set H
(m)
i := −∞. Furthermore,

we have

1 ≤ i
(N)
∗ ≤ i

(N−1)
∗ ≤ · · · ≤ i

(1)
∗ ≤ N. (2.10)

Proof. The monotone selection region for the problem with m (∈ N ) selection

chances is defined by B(m) := {i ∈ N : G
(m)
i > 0}, where

G
(m)
i := V

(m)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(m)
j , i ∈ N . (2.11)

To derive (2.6) and (2.7), it suffices to show that B(m) is closed and satisfies

B(m) = {i ∈ N : H
(m)
i > 0}, which is also deduced by verifying that G

(m)
i > 0

is equivalent to H
(m)
i > 0 for each i ∈ N and that i 7→ H

(m)
i changes sign from

nonpositive to positive at most once. On the other hand, to obtain (2.10), it

suffices to show that H
(m)
i ≥ H

(m−1)
i for i ∈ N such that H

(m−1)
i > −∞. We

verify them by the induction on m.

While proving Proposition 1.1, we have observed that G
(1)
i > 0 is equivalent

to H
(1)
i > 0 for i ∈ N . In particular, if qj = 0 for some j ∈ {i + 1, . . . , N},

then G
(1)
i ≤ 0, while if qj > 0 for all j = i + 1, . . . , N , then it holds that

G
(1)
i = (

∏N
j=i+1 qj) H

(1)
i (refer to (2.5) and (2.8)). We have also observed that

i 7→ H
(1)
i changes sign from nonpositive to positive at most once. The inequality

H
(2)
i ≥ H

(1)
i for i ∈ N such that H

(1)
i > −∞ is immediately obtained from (2.9);

that is,

H
(2)
i − H

(1)
i =

N∑
j=(i+1)∨i

(1)
∗

rj H
(1)
j ≥ 0,

where the last inequality follows from H
(1)
j > 0 for j ≥ i

(1)
∗ .

As the induction hypothesis, for m′ = 1, 2, . . . , m with some fixed m ∈

{1, 2, . . . , N − 1}, we now assume the following.

(i) G
(m′)
i > 0 is equivalent to H

(m′)
i > 0 for every i ∈ N . In particular, if

qj = 0 for some j ∈ {i + 1, . . . , N}, then G
(m′)
i ≤ 0, and if qj > 0 for all

j = i + 1, . . . , N , then it holds that G
(m′)
i = (

∏N
j=i+1 qj) H

(m′)
i .
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(ii) i 7→ H
(m′)
i changes sign from nonpositive to positive at most once.

(iii) H
(m′+1)
i − H

(m′)
i ≥ 0 for i ∈ N such that H

(m′)
i > −∞.

By the induction hypothesis, H
(m)
i > 0 and equivalently G

(m)
i > 0 for i ≥ i

(m)
∗ .

Thus, by (i) above, qj > 0 for all j = i
(m)
∗ +1, . . . , N . Let us show (i)–(iii) above

for m′ = m + 1. We first examine (i). ¿From (2.11), the monotone selection

region in the case with m + 1 selection chances is given by B(m+1) = {i ∈ N :

G
(m+1)
i > 0}, where

G
(m+1)
i = V

(m+1)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj V

(m+1)
j , i ∈ N . (2.12)

Since V
(m+1)
j = V

(1)
j + W

(m)
j from (2.2), substituting this in (2.12), we obtain

G
(m+1)
i = V

(1)
i + W

(m)
i −

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj (V (1)

j + W
(m)
j )

= G
(1)
i +

N∑
j=i+1

( j−1∏
k=i+1

qk

)
pj (M (m)

j − W
(m)
j ), (2.13)

where the first term on the right-hand side is obtained from (2.4) and the second

term is obtained from (2.3). By the induction hypothesis, we have M
(m)
j = V

(m)
j

for j ≥ i
(m)
∗ and M

(m)
j = W

(m)
j for j < i

(m)
∗ in (2.1); that is,

M
(m)
j − W

(m)
j =

V
(m)
j − W

(m)
j for j ≥ i

(m)
∗ ,

0 for j < i
(m)
∗ .

Furthermore, the induction hypothesis reads (2.3) as

W
(m)
j =

N∑
`=j+1

( `−1∏
k=j+1

qk

)
p` V

(m)
` for j ≥ i

(m)
∗ .

Therefore, from (2.11), we have

M
(m)
j − W

(m)
j = G

(m)
j for j ≥ i

(m)
∗ ,
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substituting this in (2.13), we have

G
(m+1)
i = G

(1)
i +

N∑
j=(i+1)∨i

(m)
∗

( j−1∏
k=i+1

qk

)
pj G

(m)
j , i ∈ N . (2.14)

Here, if j ∈ {i + 1, . . . , N} exists such that qj = 0, then this j is less than or

equal to i
(m)
∗ since qj > 0 for all j = i

(m)
∗ +1, . . . , N . Namely, this occurs only in

the case of i < i
(m)
∗ , where the first term on the right-hand side of (2.14) is less

than or equal to zero and the second term is equal to zero; that is, G
(m+1)
i ≤ 0.

Conversely, suppose that qj > 0 for all j = i + 1, . . . , N for some i ∈ N . Then,

by the induction hypothesis, applying G
(m′)
i = (

∏N
j=i+1 qj) H

(m′)
i for m′ = 1

and m′ = m to (2.14), we obtain

G
(m+1)
i =

( N∏
j=i+1

qj

)
H

(1)
i +

N∑
j=(i+1)∨i

(m)
∗

( j−1∏
k=i+1

qk

)
pj

( N∏
`=j+1

q`

)
H

(m)
j

=
N∏

j=i+1

qj

(
H

(1)
i +

N∑
j=(i+1)∨i

(m)
∗

rj H
(m)
j

)
,

so that (2.9) leads to

G
(m+1)
i =

( N∏
j=i+1

qj

)
H

(m+1)
i . (2.15)

¿From the observation above, if G
(m+1)
i > 0, then qj > 0 for all j = i+1, . . . , N

and (2.15) leads to H
(m+1)
i > 0. Conversely, if H

(m+1)
i > 0, then (2.9) states

that H
(1)
i > −∞; that is, qj > 0 for all j = i+1, . . . , N . Thus, (2.15) also leads

to G
(m+1)
i > 0. Hence, we have (i) for m′ = m + 1.

Next we prove (ii). By the induction hypothesis, H
(m+1)
i ≥ H

(m)
i for i ∈ N

such that H
(m)
i > −∞ and H

(m)
i > 0 for i ≥ i

(m)
∗ ; that is, H

(m+1)
i > 0

for i ≥ i
(m)
∗ . For i < i

(m)
∗ , we have

∑N
j=(i+1)∨i

(m)
∗

rj H
(m)
j =

∑N
j=i

(m)
∗

rj H
(m)
j ,

which is invariant to i. Thus, (2.9) states that H
(m+1)
i (= H

(1)
i + Constant) is

nondecreasing in i (< i
(m)
∗ ). Hence, i 7→ H

(m+1)
i changes sign from nonpositive

to positive at most once, and (ii) holds for m′ = m + 1.
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Finally, to prove (iii) for m′ = m + 1, we use (2.9) and take the difference

between H
(m+2)
i and H

(m+1)
i ; that is,

H
(m+2)
i − H

(m+1)
i =

N∑
j=(i+1)∨i

(m+1)
∗

rj H
(m+1)
j −

N∑
j=(i+1)∨i

(m)
∗

rj H
(m)
j

≥
N∑

j=(i+1)∨i
(m)
∗

rj (H(m+1)
j − H

(m)
j ) ≥ 0,

where the first inequality follows from H
(m+1)
j > 0 for j ≥ i

(m+1)
∗ and i

(m+1)
∗ ≤

i
(m)
∗ by the induction hypothesis. The second inequality also follows from the

induction hypothesis. Hence, the induction is completed and so is the proof.

Let h
(m)
i := 1 − H

(m)
i for i and m ∈ N . ¿From (2.9), h

(m)
i for m ∈ N are

then given by

h
(1)
i =

N∑
j=i+1

rj ,

h
(m)
i =

i
(m−1)
∗ −1∑
j=i+1

rj +
N∑

j=(i+1)∨i
(m−1)
∗

rj h
(m−1)
j , m = 2, 3, . . . .

We can observe from the above equations that each h
(m)
i is expressed as a

combination of multiple odds-sums. For instance, h
(2)
i and h

(3)
i are calculated

as

h
(2)
i =

i
(1)
∗ −1∑

j=i+1

rj +
N∑

j=(i+1)∨i
(1)
∗

rj

N∑
k=j+1

rk, (2.16)

h
(3)
i =

i
(2)
∗ −1∑

j=i+1

rj +
N∑

j=(i+1)∨i
(2)
∗

rj

{ i
(1)
∗ −1∑

k=j+1

rk +
N∑

k=(j+1)∨i
(1)
∗

rk

N∑
`=k+1

r`

}
.

The optimal rule for the problem with m (∈ N ) selection chances then reduces

to τ
(m)
∗ = min{i ∈ N : h

(m)
i < 1 & Xi = 1}. Hence, we call Theorem 2.1

“multiple sum-the-odds theorem” or “multiple odds theorem” in short.
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3. Maximum probability of win

In this section, we first derive a formula for computing the maximum

probability of win under the optimal rule with m (∈ N ) selection chances

and then provide closed-form formulas for m = 2 and 3. Then, we give its

lower and upper bounds and the limit as N → ∞ for m = 2.

Theorem 3.1. For the problem with at most m (∈ N ) selection chances,

the maximum probability of win under the optimal rule, P (m)(win) =

P
(m)
N (p1, . . . , pN ), is given by

P (m)(win) =
N∏

j=i
(m)
∗

qj

N∑
j=i

(m)
∗

rj +
N∑

j=i
(m)
∗

( j∏
k=i

(m)
∗

qk

)
rj W

(m−1)
j , (3.1)

where if pi
(m)
∗

= 1, then P (m)(win) =
∏N

k=i
(m)
∗ +1

qk + W
(m−1)

i
(m)
∗

(note that pj < 1

for all j = i
(m)
∗ + 1, . . . , N). Especially, for m = 2 and 3,

P (2)(win) =
N∏

j=i
(2)
∗

qj

N∑
j=i

(2)
∗

rj

(
1 +

i
(1)
∗ −1∏

k=j+1

(1 + rk)
N∑

k=(j+1)∨i
(1)
∗

rk

)
, (3.2)

P (3)(win) =
N∏

j=i
(3)
∗

qj

N∑
j=i

(3)
∗

rj

[
1 +

i
(2)
∗ −1∏

k=j+1

(1 + rk)

×
N∑

k=(j+1)∨i
(2)
∗

rk

(
1 +

i
(1)
∗ −1∏

`=k+1

(1 + r`)
N∑

`=(k+1)∨i
(1)
∗

r`

)]
. (3.3)

Proof. Note that the independence of Xi’s leads to P (m)(win) = W
(m)

i
(m)
∗ −1

under the optimal selection rule. Thus, from (2.2) and (2.3), we obtain

P (m)(win) =
N∑

j=i
(m)
∗

( j−1∏
k=i

(m)
∗

qk

)
pj M

(m)
j

=
N∑

j=i
(m)
∗

( j−1∏
k=i

(m)
∗

qk

)
pj

( N∏
`=j+1

q` + W
(m−1)
j

)
,

where the second equality follows from M
(m)
j = V

(m)
j for j ≥ i

(m)
∗ . Hence, (3.1)

is easily obtained.
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P (2)(win) and P (3)(win) are derived from straightforward calculations. Since

the optimal rule requires the selection of the first success after i
(1)
∗ , we have

M
(1)
k = V

(1)
k =

∏N
`=k+1 qk for k ≥ i

(1)
∗ . It then follows from (2.3) that

W
(1)
j =

N∑
k=j+1

( k−1∏
`=j+1

q`

)
pk M

(1)
k =

N∏
`=j+1

q`

N∑
k=j+1

rk for j ≥ i
(1)
∗ − 1.

On the other hand, for j < i
(1)
∗ − 1, we have W

(1)
j = W

(1)

i
(1)
∗ −1

=∏N
`=i

(1)
∗

q`
∑N

j=i
(1)
∗

rj . Therefore, for each j ∈ N ,

W
(1)
j =

N∏
`=(j+1)∨i

(1)
∗

q`

N∑
k=(j+1)∨i

(1)
∗

rk.

Substituting this in (3.1) with m = 2 and using 1/qk = 1 + rk, we have (3.2).

Using an approach similar to the one used above, we obtain

W
(2)
j =

N∏
`=(j+1)∨i

(2)
∗

q`

N∑
k=(j+1)∨i

(2)
∗

rk

(
1 +

i
(1)
∗ −1∏

`=k+1

(1 + r`)
N∑

`=(k+1)∨i
(1)
∗

r`

)
.

Substituting this in (3.1) with m = 3, we have (3.3).

Next, we consider the lower and upper bounds for the maximum probability

of win for m = 2 and its limit as N → ∞. In the following, to emphasize the

dependence on N , we subscript “N” and write P
(m)
N (win) and i

(m)
∗,N occasionally.

Let R
(m)
N =

∑N
j=i

(m)
∗,N

rj and R
(m,2)
N =

∑N
j=i

(m)
∗,N

r2
j for m ∈ N . Note from (1.2)

and (2.10) that 0 < min(1,
∑N

j=1 rj) ≤ R
(1)
N ≤ R

(2)
N ≤ · · · ≤ R

(N)
N ≤

∑N
j=1 rj .

For the single selection problem, Bruss [3] deduced that

R
(1)
N e−R

(1)
N < P

(1)
N (win) ≤ R

(1)
N e−R

(1)
N +R

(1,2)
N ,

and further proved that, if R
(1)
N → 1 and R

(1,2)
N → 0 as N → ∞, then

P
(1)
N (win) → 1/e as N → ∞.

For the double selection problem, we give the bounds and the limit as N → ∞

for the maximum probability of win. We observe that our limit e−1 + e−3/2 is
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the same as that for the CSP with two selection chances under a reasonable

condition on R
(m)
N and R

(m,2)
N as N → ∞ (e.g., Gilbert and Mosteller [9],

Bruss [2], and Ano and Ando [1]).

Theorem 3.2. For the maximum probability of win with m = 2, we have

P
(2)
N (win) > R

(1)
N e−R

(1)
N + e−R

(2)
N , (3.4)

P
(2)
N (win) < R

(1)
N e−R

(1)
N +R

(1,2)
N

+ (1 + ri
(1)
∗

R
(1)
N + ri

(2)
∗

) e−R
(2)
N +R

(2,2)
N . (3.5)

Furthermore, if R
(1)
N → 1, R

(2)
N → 3/2, R

(1,2)
N → 0 and R

(2,2)
N → 0 as N → ∞,

then

P
(2)
N (win) → e−1 + e−3/2 as N → ∞. (3.6)

Proof. We first derive the lower bound of (3.4). A simple expansion of (3.2)

in Theorem 3.1 yields

P (2)(win) = R(2)
N∏

j=i
(2)
∗

qj + R(1)
i
(1)
∗ −1∑

j=i
(2)
∗

( j−1∏
k=i

(2)
∗

qk

)
pj

( N∏
k=i

(1)
∗

qk

)

+
N∏

j=i
(2)
∗

qj

N∑
j=i

(1)
∗

rj

N∑
k=j+1

rk, (3.7)

where the subscript “N” is omitted to simplify the notation. In the second

term on the right-hand side (RHS) above, we note that
∑i

(1)
∗ −1

j=i
(2)
∗

(∏j−1

k=i
(2)
∗

qk

)
pj =

1−
∏i

(1)
∗ −1

j=i
(2)
∗

qj since it represents the probability that at least one success appears

from i
(2)
∗ to i

(1)
∗ − 1 when i

(1)
∗ > i

(2)
∗ (while it is equal to zero when i

(1)
∗ = i

(2)
∗ ).

Thus, we obtain

(2nd term on RHS of (3.7)) = R(1)

(
1 −

i
(1)
∗ −1∏

j=i
(2)
∗

qj

) N∏
k=i

(1)
∗

qk

= R(1)

( N∏
j=i

(1)
∗

qj −
N∏

j=i
(2)
∗

qj

)
. (3.8)
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Consider the third term on the right-hand side in (3.7). Since h
(2)
i = 1 −

H
(2)
i ≥ 1 for i < i

(2)
∗ , substituting i = i

(2)
∗ − 1 in (2.16), we have

∑i
(1)
∗ −1

j=i
(2)
∗

rj +∑N
j=i

(1)
∗

rj
∑N

k=j+1 rk ≥ 1, which is equivalent to

N∑
j=i

(1)
∗

rj

N∑
k=j+1

rk ≥ 1 + R(1) − R(2).

Therefore, we obtain

(3rd term on RHS of (3.7)) ≥ (1 + R(1) − R(2))
N∏

j=i
(2)
∗

qj . (3.9)

Substituting (3.8) and (3.9) in (3.7) yields

P (2)(win) ≥ R(1)
N∏

j=i
(1)
∗

qj +
N∏

j=i
(2)
∗

qj . (3.10)

Here, noting that 1/qj = 1 + rj and taking the logarithm, we have for any

s ∈ N ,

log
N∏

j=s

qj = −
N∑

j=s

log(1 + rj) > −
N∑

j=s

rj ,

where the inequality follows since log(1 + x) ≤ x for x ≥ 0; the equality

follows only when x = 0. Hence, we obtain
∏N

j=s qj > e−R with R =
∑N

j=s rj .

Substituting this in (3.10) with s = i
(1)
∗ and s = i

(2)
∗ , we obtain (3.4).

Next we derive the upper bound of (3.5). For this, we examine the third

term on the right-hand side in (3.7). Since h
(2)
i < 1 for i ≥ i

(2)
∗ , substituting

i = i
(2)
∗ in (2.16), we obtain

∑i
(1)
∗ −1

j=i
(2)
∗ +1

rj +
∑N

j=(i
(2)
∗ +1)∨i

(1)
∗

rj
∑N

k=j+1 rk < 1, so

that,
N∑

j=i
(1)
∗

rj

N∑
k=j+1

rk < 1 + (1 + ri
(1)
∗

) R(1) − (R(2) − ri
(2)
∗

).

Therefore, we obtain

(3rd term on RHS of (3.7)) <
(
1 + (1 + ri

(1)
∗

) R(1) − R(2) + ri
(2)
∗

) N∏
j=i

(2)
∗

qj .

(3.11)
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Applying (3.8) and (3.11) to (3.7), we obtain

P (2)(win) < R(1)
N∏

j=i
(1)
∗

qj + (1 + ri
(1)
∗

R(1) + ri
(2)
∗

)
N∏

j=i
(1)
∗

qj . (3.12)

Here, since 1/qj = 1 + rj , using log(1 + x) ≥ x − x2 for x ≥ 0, we obtain for

any s ∈ N ,

log
N∏

j=s

qj ≤ −
N∑

j=s

rj +
N∑

j=s

r2
j .

Hence, by assigning
∑N

j=s rj = R and
∑N

j=s r2
j = R′, we obtain

∏N
j=s qj ≤

e−R+R′
. Applying this in (3.12) with s = i

(1)
∗ and s = i

(2)
∗ , we obtain (3.5).

Finally, we have ri
(1)
∗,N

→ 0 and ri
(2)
∗,N

→ 0 as N → ∞, since R
(1,2)
N → 0 and

R
(2,2)
N → 0 as N → ∞, respectively. Therefore, (3.4) and (3.5) yield (3.6) as

N → ∞.

As a final remark, in the multiple selection problem, we make two conjectures

on the limits and lower bounds for the maximum probability of win. First, we

conjecture that, if R
(m)
N and R

(m,2)
N , m = 1, 2, . . ., have the same limits as those

for the CSP with multiple selection chances, then the limit of the maximum

probability of win is also consistent with that for the CSP; that is,

lim
N→∞

P
(m)
N (win) = lim

N→∞

m∑
j=1

i
(j)
∗
N

for m = 1, 2, . . ..

The case of m = 1 was solved by Bruss [3] and the case of m = 2 is solved

above. For instance, for the triple selection problem, our conjecture states that,

if R
(1)
N → 1, R

(2)
N → 3/2 and R

(3)
N → 47/24 with R

(m,2)
N → 0, m = 1, 2, 3 as

N → ∞, then

lim
N→∞

P
(3)
N (win) = e−1 + e−3/2 + e−47/24.

On performing some delicate and complicated calculations, this triple selection

case could be confirmed by an approach similar to that for P
(2)
N (win). However,

the problem of general m is more challenging.
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Second, for the lower bounds for the maximum probability of win, our

conjecture is stated as that, for some reasonable condition on pi, i ∈ N ,

P
(m)
N (win) > lim

N→∞

m∑
j=1

i
(j)
∗
N

for m = 1, 2, . . ..

For this problem, the case of m = 1 was solved by Bruss [4]. However, the case

of m = 2 is still open.
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