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What is our stopping problem?—1/13

1. For a positive integer N, let X1, X2, . . . , XN denote independent 0/1
random variables defined on a probability space (Ω,F , P).

2. We observe these Xi ’s sequentially and claim that the ith trial is a
success if Xi = 1.

3. The problem lies in finding a rule τ ∈ T to maximize the probability of
selecting the last success, where T is the class of all selection rules such
that {τ = j} ∈ σ(X1, X2, · · · , Xj).

4. Let N = {1, 2, . . . , N} and let pi = P(Xi = 1) and qi = 1 − pi for i ∈ N ,
where we leave out the trivial case and assume that there exists at least
one i ∈ N such that pi > 0. In addition, let ri , i ∈ N , denote the odds of
the ith trial; that is, ri = pi/qi , where we set ri = +∞ if pi = 1.
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Odds theorem with single selection chance—2/13

1. When exactly one selection chance was allowed, Bruss [1] solved the
problem with elegant simplicity as follows.

2. The optimal selection rule τ
(1)
∗ selects the first success after the sum of

the future odds becomes less than one; that is,

τ (1)
∗ = min

˘

i ≥ i (1)∗ : Xi = 1
¯

, (1.1)

i (1)∗ = min
n

i ∈ N :
N

X

j=i+1

rj < 1
o

, (1.2)

where min(∅) = +∞ and
Pb

j=a · = 0 when b < a conventionally.

3. Furthermore, the maximum probability of “win” (selecting the last
success) is given by

P(1)(win) = P
(1)
N (p1, . . . , pN) =

N
Y

k=i
(1)
∗

qk

N
X

k=i
(1)
∗

rk . (1.3)
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Related works—3/13

1. Applicable to many basic optimal stopping problems such as betting, the
classical secretary problem (CSP) and the group-interview secretary
problem proposed by Hsiau and Yang (2000).

2. Bruss (2003) also found that P(1)(win) is bounded below by e−1 when
PN

j=1 rj ≥ 1. These results generalize the known lower bounds for the
CSP, where each pi has the specific value of pi = 1/i for i ∈ N (e.g., Hill
and Krengel (1992)).

3. Bruss and Paindaveine (2000) extended it to the problem of selecting the
last ` (> 1) successes. Hsiau and Yang (2003) considered the problem
with Markov-dependent trials.

4. Ferguson (2008) extended the odds theorem in several ways, where
infinite number of trials are allowed and the trials are generally dependent.

5. Ano, Kakie and Miyoshi (2010) study the multiple selection problem in
Markov-dependent trials.
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Main results— 4/13

1. First main result: we derive the optimal rule for the problem of selecting
the last success with at most m (∈ N ) selection chances and express the
optimal rule as a combination of multiple odds-sums.

2. Second main result: we provide a formula for computing the probability
of win for the problem with m (∈ N ) selection chances and provide the
closed-form formulas for m = 2 and 3.

3. Furthermore, we give the lower and upper bounds for the maximum
probability of win for m = 2 and derive its limit as N → ∞ under some
condition on pi , i ∈ N . This limit of the maximum probability of win is
consistent with the known limit e−1 + e−3/2 for the CSP with two
selection chances.

K. Ano, H. Kakinuma and N. Miyoshi Odds theorem with multiple selection chances



Introduction
Multiple sum-the-odds theorem

Maximum probability of win
Selected references

Formulation— 5/13

1. Let V
(m)
i , i ∈ N , denote the conditional maximum probability of win

provided that we observe Xi = 1 and select this success when we have at
most m selection chances left.

2. Let W
(m)
i , i ∈ N , denote the conditional maximum probability of win

provided that we observe Xi = 1 and ignore this success when we have at
most m selection chances left.

3. Furthermore, let M
(m)
i , i ∈ N , denote the conditional maximum

probability of win provided that we observe Xi = 1 and decide whether to
select when we have at most m selection chances left. The optimality
equation for each m ∈ N is then given by

M
(m)
i = max{V (m)

i , W
(m)
i }, i ∈ N . (2.1)

Clearly, if m > N − i (the remaining selection chances are more than the
remaining observations) and we observe Xi = 1, then the decision to

select results in win with probability 1, so that M
(m)
i = V

(m)
i = 1 for

i > N − m. In particular, we have M
(m)
N = V

(m)
N = 1 and W

(m)
N = 0 for

any m ∈ N .
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Formulation (Continued)— 6/13

1. We have for each m ∈ N ,

V
(m)
i = P(Xi+1 = Xi+2 = · · · = XN = 0 | Xi = 1) + W

(m−1)
i

=
N

Y

j=i+1

qj + W
(m−1)
i , i ∈ N , (2.2)

where we set W
(0)
i := 0 for i ∈ N and

Qb
j=a · = 1 when b < a

conventionally.

2. For each m ∈ N ,

W
(m)
i =

N
X

j=i+1

P(Xi+1 = · · · = Xj−1 = 0, Xj = 1 | Xi = 1) M
(m)
j

=
N

X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj M
(m)
j , i ∈ N . (2.3)
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Another proof of the odds theorem with single selection— 7/13

1. The monotone selection region for the single selection problem is given by
B(1) := {i ∈ N : G

(1)
i > 0}, where

G
(1)
i := V

(1)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj V
(1)
j =

N
Y

j=i+1

qj

„

1 −
N

X

j=i+1

rj

«

, i ∈ N .

(2.4)

2. G
(1)
i > 0 is equivalent to

PN
j=i+1 rj < 1 and B(1) is given by

B(1) =



i ∈ N :
N

X

j=i+1

rj < 1

ff

.

Since
PN

j=i+1 rj is clearly nonincreasing in i , B(1) is “closed” in the sense
of the monotone problem in Chow et al (1971) of the classical optimal
stopping theory. Hence, the optimal rule for the single selection problem
is given by (1.1) and (1.2).
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Multiple Sum-the-Odds Theorem— 8/13

1. The optimal selection rule τ
(m)
∗ is given by

τ (m)
∗ = min{i ≥ i (m)

∗ : Xi = 1}, (2.5)

i (m)
∗ = min{i ∈ N : H

(m)
i > 0}, (2.6)

where min(∅) = +∞ and for each i ∈ N , H
(m)
i , m ∈ N , are recursively

defined by H
(1)
i := 1 −

PN
j=i+1 rj and

H
(m)
i := H

(1)
i +

N
X

j=(i+1)∨i
(m−1)
∗

rj H
(m−1)
j , m = 2, 3, . . . , N, (2.7)

with a ∨ b = max{a, b} for a, b ∈ R. In (2.7), if there exists a
j ∈ {i + 1, . . . , N} such that pj = 1 (that is, rj = +∞), then we set

H
(m)
i := −∞.

2. Furthermore, we have

1 ≤ i (m)
∗ ≤ i (m−1)

∗ ≤ · · · ≤ i (1)∗ ≤ N. (2.8)
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Proof of Multiple Sum-the-Odds Theorem— 9/13

1. The monotone selection region for the problem with m (∈ N ) selection

chances is defined by B(m) := {i ∈ N : G
(m)
i > 0}, where

G
(m)
i := V

(m)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj V
(m)
j , i ∈ N . (2.9)

2. Key of the proof is the following equation on m;

G
(m+1)
i =

„ N
Y

j=i+1

qj

«

H
(m+1)
i .

H
(m+1)
i = H

(1)
i +

N
X

j=(i+1)∨i
(m)
∗

rj H
(m)
j . (2.10)

3. We verify the optimality of B(m) by the induction on m.
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Probability of win— 10/13

1. For the problem with at most m (∈ N ) selection chances, the maximum

probability of win under the optimal rule, P(m)(win) = P
(m)
N (p1, . . . , pN),

is given by

P(m)(win) =
N

Y

j=i
(m)
∗

qj

N
X

j=i
(m)
∗

rj +
N

X

j=i
(m)
∗

„ j
Y

k=i
(m)
∗

qk

«

rj W
(m−1)
j , (3.1)

where if p
i
(m)
∗

= 1, then P(m)(win) =
QN

k=i
(m)
∗ +1

qk + W
(m−1)

i
(m)
∗

(note that

pj < 1 for all j = i
(m)
∗ + 1, . . . , N).

2. Especially, for m = 2 and 3,

P(2)(win) =
N

Y

j=i
(2)
∗

qj

N
X

j=i
(2)
∗

rj

„

1 +

i
(1)
∗ −1
Y

k=j+1

(1 + rk)
N

X

k=(j+1)∨i
(1)
∗

rk

«

, (3.2)

P(3)(win) =
N

Y

j=i
(3)
∗

qj

N
X

j=i
(3)
∗

rj

»

1 +

i
(2)
∗ −1
Y

k=j+1

(1 + rk) × · · · . (3.3)
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Limiting probability of win— 11/13

1. In the following, to emphasize the dependence on N, we subscript “N”
and write P

(m)
N (win) and i

(m)
∗,N occasionally. Let R

(m)
N =

PN

j=i
(m)
∗,N

rj and

R
(m,2)
N =

PN

j=i
(m)
∗,N

r 2
j for m ∈ N .

2. For the maximum probability of win with m = 2, we have

P
(2)
N (win) > R

(1)
N e−R

(1)
N + e−R

(2)
N , (3.4)

P
(2)
N (win) < R

(1)
N e−R

(1)
N

+R
(1,2)
N

+ (1 + r
i
(1)
∗

R
(1)
N + r

i
(2)
∗

) e−R
(2)
N

+R
(2,2)
N . (3.5)

Furthermore, if R
(1)
N → 1, R

(2)
N → 3/2, R

(1,2)
N → 0 and R

(2,2)
N → 0 as

N → ∞, then

P
(2)
N (win) → e−1 + e−3/2 as N → ∞. (3.6)
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Conjectures on the probability of win — 12/13

1. First, we conjecture that, if R
(m)
N and R

(m,2)
N , m = 1, 2, . . ., have the same

limits as those for the CSP with multiple selection chances, then the limit
of the maximum probability of win is also consistent with that for the
CSP; that is,

lim
N→∞

P
(m)
N (win) = lim

N→∞

m
X

j=1

i
(j)
∗

N
for m = 1, 2, . . ..

For instance, for the triple selection problem, our conjecture states that, if
R

(1)
N → 1, R

(2)
N → 3/2 and R

(3)
N → 47/24 with R

(m,2)
N → 0, m = 1, 2, 3 as

N → ∞, then

lim
N→∞

P
(3)
N (win) = e−1 + e−3/2 + e−47/24.

2. Second, for the lower bounds for the maximum probability of win, our
conjecture is stated as that, for some reasonable condition on pi , i ∈ N ,

P
(m)
N (win) > lim

N→∞

m
X

j=1

i
(j)
∗

N
for m = 1, 2, . . ..
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