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What is our stopping problem? —1/20

1. For a positive integer N, let X1, X2, . . . , XN denote independent 0/1
random variables defined on a probability space (Ω,F , P).

2. We observe these Xi ’s sequentially and claim that the ith trial is a
success if Xi = 1.

3. The problem lies in finding a rule τ ∈ T to maximize the probability of
selecting the last success, where T is the class of all selection rules such
that {τ = j} ∈ σ(X1, X2, · · · , Xj).

4. Let N = {1, 2, . . . , N} and let pi = P(Xi = 1) and qi = 1 − pi for i ∈ N ,
where we leave out the trivial case and assume that there exists at least
one i ∈ N such that pi > 0. In addition, let ri , i ∈ N , denote the odds of
the ith trial; that is, ri = pi/qi , where we set ri = +∞ if pi = 1.
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Odds theorem with single selection chance —2/20

1. When exactly one selection chance was allowed, Bruss [1] solved the
problem with elegant simplicity as follows.

2. The optimal selection rule τ
(1)
∗ selects the first success after the sum of

the future odds becomes less than one; that is,

τ (1)
∗ = min

˘

i ≥ i (1)∗ : Xi = 1
¯

, (1.1)

i (1)∗ = min
n

i ∈ N :
N

X

j=i+1

rj < 1
o

, (1.2)

where min(∅) = +∞ and
Pb

j=a · = 0 when b < a conventionally.

3. Furthermore, the maximum probability of “win” (selecting the last
success) is given by

P(1)(win) = P
(1)
N (p1, . . . , pN) =

N
Y

k=i
(1)
∗

qk

N
X

k=i
(1)
∗

rk . (1.3)
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Related works —3/20

1. Applicable to many basic optimal stopping problems such as betting, the
Classical Secretary Problem (CSP) and the group-interview secretary
problem proposed by Hsiau and Yang (2000).

2. Bruss (2003) remarkabley found that P (1)(win) is bounded below by e−1

for any {pi}N
i=1 when

PN
j=1 rj ≥ 1. These results generalize the known

lower bounds for the CSP, where each pi has the specific value of
pi = 1/i for i ∈ N (e.g., Hill and Krengel (1992)).

3. Bruss and Paindaveine (2000) extended it to the problem of selecting the
last ` (> 1) successes. Hsiau and Yang (2003) considered the problem
with Markov-dependent trials. Ferguson (2008) extended the odds
theorem in several ways, where infinite number of trials are allowed and
the trials are generally dependent.

4. Ano, Kakie and Miyoshi (2010) study the multiple selection problem in
Markov-dependent trials. Historically, the multiple selection CSP goes
back to Gilbert and Mosteller (1966).
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Main results — 4/20

1. First main result: we derive the optimal rule for the problem of selecting
the last success with at most m (∈ N ) selection chances and express the
optimal rule as a combination of multiple odds-sums.

2. Second main result: we provide a formula for computing the probability
of win for the problem with m (∈ N ) selection chances and provide the
closed-form formulas for m = 2 and 3.

3. Furthermore, we give the lower and upper bounds for the maximum
probability of win for m = 2 and derive its limit as N → ∞ under some
condition on pi , i ∈ N . This limit of the maximum probability of win is
consistent with the known limit e−1 + e−3/2 for the CSP with two
selection chances.
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Formulation — 5/20

1. V
(m)
i , i ∈ N := the conditional maximum probability of win provided that

we observe Xi = 1 and select this success when we have at most m
selection chances left.

2. W
(m)
i , i ∈ N :=the conditional maximum probability of win provided that

we observe Xi = 1 and ignore this success when we have at most m
selection chances left.

3. Furthermore, let M
(m)
i , i ∈ N , denote the conditional maximum

probability of win provided that we observe Xi = 1 and decide whether to
select when we have at most m selection chances left. The optimality
equation for each m ∈ N is then given by

M
(m)
i = max{V (m)

i , W
(m)
i }, i ∈ N . (2.1)

4. Boundary conditions:Clearly, if m > N − i (the remaining selection
chances are more than the remaining observations) and we observe
Xi = 1, then the decision to select results in win with probability 1, so
that M

(m)
i = V

(m)
i = 1 for i > N − m. In particular, we have

M
(m)
N = V

(m)
N = 1 and W

(m)
N = 0 for any m ∈ N .
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Formulation (Continued) — 6/20

1. We have for each m ∈ N ,

V
(m)
i = P(Xi+1 = Xi+2 = · · · = XN = 0 | Xi = 1) + W

(m−1)
i

=
N

Y

j=i+1

qj + W
(m−1)
i , i ∈ N , (2.2)

where we set W
(0)
i := 0 for i ∈ N and

Qb
j=a · = 1 when b < a

conventionally.

2. For each m ∈ N ,

W
(m)
i =

N
X

j=i+1

P(Xi+1 = · · · = Xj−1 = 0, Xj = 1 | Xi = 1) M
(m)
j

=
N

X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj M
(m)
j , i ∈ N . (2.3)
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Another proof of the odds theorem with single selection — 7/20

1. The monotone selection region for the single selection problem is given by
B(1) := {i ∈ N : G

(1)
i > 0}, where

G
(1)
i := V

(1)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj V
(1)
j =

N
Y

j=i+1

qj

„

1 −
N

X

j=i+1

rj

«

, i ∈ N .

(2.4)

2. G
(1)
i > 0 is equivalent to

PN
j=i+1 rj < 1 and B(1) is written as

B(1) =



i ∈ N :
N

X

j=i+1

rj < 1

ff

.

Since
PN

j=i+1 rj is clearly nonincreasing in i , B(1) is “closed” (that is,

P(Xj ∈ B(1)|Xi ∈ B(1)) = 1 for any j > i) in the sense of the monotone
problem in Chow et al (1971) of the optimal stopping theory. Hence, the
optimal rule for the single selection problem is given by (1.1) and (1.2).
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Multiple Sum-the-Odds Theorem — 8/20

1. The optimal selection rule τ
(m)
∗ is given by

τ (m)
∗ = min{i ≥ i (m)

∗ : Xi = 1}, (2.5)

i (m)
∗ = min{i ∈ N : H

(m)
i > 0}, (2.6)

where min(∅) = +∞ and for each i ∈ N , H
(m)
i , m ∈ N , are recursively

defined by H
(1)
i := 1 −

PN
j=i+1 rj and

H
(m)
i := H

(1)
i +

N
X

j=(i+1)∨i
(m−1)
∗

rj H
(m−1)
j , m = 2, 3, . . . , N, (2.7)

with a ∨ b = max{a, b} for a, b ∈ R. In (2.7), if there exists a
j ∈ {i + 1, . . . , N} such that pj = 1 (that is, rj = +∞), then we set

H
(m)
i := −∞. Note that H

(m)
i is expressed by the multiple sums the odds.

2. Furthermore, we have

1 ≤ i (m)
∗ ≤ i (m−1)

∗ ≤ · · · ≤ i (1)∗ ≤ N. (2.8)
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Proof of Multiple Sum-the-Odds Theorem 1/7 — 9/20

1. The monotone selection region for the problem with m (∈ N ) selection

chances is defined by B(m) := {i ∈ N : G
(m)
i > 0}, where

G
(m)
i := V

(m)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj V
(m)
j , i ∈ N . (2.9)

2. Key of the proof is the following recursive equation on m;

G
(m+1)
i =

„ N
Y

j=i+1

qj

«

H
(m+1)
i .

H
(m+1)
i = H

(1)
i +

N
X

j=(i+1)∨i
(m)
∗

rj H
(m)
j . (2.10)

3. We can verify the optimality of B(m) by the induction on m.
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Proof of Multiple Sum-the-Odds Theorem 2/7 — 10/20

1. The monotone selection region for the problem with m (∈ N ) selection

chances is defined by B(m) := {i ∈ N : G
(m)
i > 0}, where

G
(m)
i := V

(m)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj V
(m)
j , i ∈ N . (2.11)

To derive (2.5) and (2.6), it suffices to show that B(m) is closed and

satisfies B(m) = {i ∈ N : H
(m)
i > 0}, which is also deduced by verifying

that G
(m)
i > 0 is equivalent to H

(m)
i > 0 for each i ∈ N and that

i 7→ H
(m)
i changes sign from nonpositive to positive at most once.

2. On the other hand, to obtain (2.8), it suffices to show that

H
(m)
i ≥ H

(m−1)
i for i ∈ N such that H

(m−1)
i > −∞. We verify them by

the induction on m.
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Proof of Multiple Sum-the-Odds Theorem 3/7 — 11/20

As the induction hypothesis, for m′ = 1, 2, . . . , m with some fixed
m ∈ {1, 2, . . . , N − 1},

(i) G
(m′)
i > 0 is equivalent to H

(m′)
i > 0 for every i ∈ N . In particular, if

qj = 0 for some j ∈ {i + 1, . . . , N}, then G
(m′)
i ≤ 0, and if qj > 0 for all

j = i + 1, . . . , N, then it holds that G
(m′)
i = (

QN
j=i+1 qj) H

(m′)
i .

(ii) i 7→ H
(m′)
i changes sign from nonpositive to positive at most once.

(iii) H
(m′+1)
i − H

(m′)
i ≥ 0 for i ∈ N such that H

(m′)
i > −∞.

By the induction hypothesis, H
(m)
i > 0 and equivalently G

(m)
i > 0 for i ≥ i

(m)
∗ .

Thus, by (i) above, qj > 0 for all j = i
(m)
∗ + 1, . . . , N. Let us show (i)–(iii)

above for m′ = m + 1.
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Proof of Multiple Sum-the-Odds Theorem 4/7 — 12/20

We first examine (i). From (2.11), the monotone selection region in the case

with m + 1 selection chances is given by B(m+1) = {i ∈ N : G
(m+1)
i > 0}, where

G
(m+1)
i = V

(m+1)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj V
(m+1)
j ,

= V
(1)
i + W

(m)
i −

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj (V
(1)
j + W

(m)
j )

= G
(1)
i +

N
X

j=i+1

„ j−1
Y

k=i+1

qk

«

pj (M
(m)
j − W

(m)
j ), (2.12)

where the first term on the right-hand side is obtained from the definition of

G
(1)
i and the second term is obtained from (2.3).
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Proof of Multiple Sum-the-Odds Theorem 5/7 — 13/20

By the induction hypothesis, we have M
(m)
j = V

(m)
j for j ≥ i

(m)
∗ and

M
(m)
j = W

(m)
j for j < i

(m)
∗ in (2.1); that is,

M
(m)
j − W

(m)
j =

(

V
(m)
j − W

(m)
j for j ≥ i

(m)
∗ ,

0 for j < i
(m)
∗ .

Furthermore, the induction hypothesis reads (2.3) as

W
(m)
j =

N
X

`=j+1

„ `−1
Y

k=j+1

qk

«

p` V
(m)
` for j ≥ i (m)

∗ .

Therefore, from (2.11), we have

M
(m)
j − W

(m)
j = G

(m)
j for j ≥ i (m)

∗ ,

substituting this in (2.12), we have

G
(m+1)
i = G

(1)
i +

N
X

j=(i+1)∨i
(m)
∗

„ j−1
Y

k=i+1

qk

«

pj G
(m)
j , i ∈ N . (2.13)
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Proof of Multiple Sum-the-Odds Theorem 6/7 — 14/20

By the induction hypothesis, applying G
(m′)
i = (

QN
j=i+1 qj) H

(m′)
i for m′ = 1 and

m′ = m to (2.13), we obtain

G
(m+1)
i =

„ N
Y

j=i+1

qj

«

H
(1)
i +

N
X

j=(i+1)∨i
(m)
∗

„ j−1
Y

k=i+1

qk

«

pj

„ N
Y

`=j+1

q`

«

H
(m)
j

=
N

Y

j=i+1

qj

„

H
(1)
i +

N
X

j=(i+1)∨i
(m)
∗

rj H
(m)
j

«

,

so that (2.7) leads to

G
(m+1)
i =

„ N
Y

j=i+1

qj

«

H
(m+1)
i . (2.14)

Hence, we have (i) for m′ = m + 1.
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Proof of Multiple Sum-the-Odds Theorem 7/7 — 15/20

1. Proof of (ii)→ Skip.

2. Finally, to prove (iii) for m′ = m + 1, we use (2.7) and take the difference

between H
(m+2)
i and H

(m+1)
i ; that is,

H
(m+2)
i − H

(m+1)
i =

N
X

j=(i+1)∨i
(m+1)
∗

rj H
(m+1)
j −

N
X

j=(i+1)∨i
(m)
∗

rj H
(m)
j

≥
N

X

j=(i+1)∨i
(m)
∗

rj (H
(m+1)
j − H

(m)
j ) ≥ 0,

where the first inequality follows from H
(m+1)
j > 0 for j ≥ i

(m+1)
∗ and

i
(m+1)
∗ ≤ i

(m)
∗ by the induction hypothesis. The second inequality also

follows from the induction hypothesis. Hence, the induction is completed
and so is the proof.
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Multiple Sum-the-Odds Theorem — 16/20

Let h
(m)
i := 1 − H

(m)
i for i and m ∈ N . We can observe that each h

(m)
i is

expressed as a combination of multiple odds-sums. For instance, h
(2)
i and h

(3)
i

are calculated as

h
(2)
i =

i
(1)
∗ −1
X

j=i+1

rj +
N

X

j=(i+1)∨i
(1)
∗

rj

N
X

k=j+1

rk , (2.15)

h
(3)
i =

i
(2)
∗ −1
X

j=i+1

rj +
N

X

j=(i+1)∨i
(2)
∗

rj

i
(1)
∗ −1
X

k=j+1

rk +
N

X

k=(j+1)∨i
(1)
∗

rk

N
X

`=k+1

r`

ff

.

The optimal rule for the problem with m (∈ N ) selection chances then reduces

to τ
(m)
∗ = min{i ∈ N : h

(m)
i < 1 & Xi = 1}. Hence, we call this Theorem

“multiple sum-the-odds theorem” or “multiple odds theorem” in short.
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Probability of win — 17/20

For the problem with at most m (∈ N ) selection chances, the maximum

probability of win under the optimal rule, P(m)(win) = P
(m)
N (p1, . . . , pN), is

given by

P(m)(win) = W
(m)

i
(m)
∗ −1

=
N

Y

j=i
(m)
∗

qj

N
X

j=i
(m)
∗

rj +
N

X

j=i
(m)
∗

„ j
Y

k=i
(m)
∗

qk

«

rj W
(m−1)
j , (3.1)

where if p
i
(m)
∗

= 1, then P(m)(win) =
QN

k=i
(m)
∗ +1

qk + W
(m−1)

i
(m)
∗

(note that pj < 1

for all j = i
(m)
∗ + 1, . . . , N).
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Probability of win for m = 2 and 3 — 18/20

1. Especially, for m = 2

P(2)(win) =
N

Y

j=i
(2)
∗

qj

N
X

j=i
(2)
∗

rj

„

1 +

i
(1)
∗ −1
Y

k=j+1

(1 + rk)
N

X

k=(j+1)∨i
(1)
∗

rk

«

. (3.2)

2. For m = 3,

P(3)(win) =
N

Y

j=i
(3)
∗

qj

N
X

j=i
(3)
∗

rj

»

1 +

i
(2)
∗ −1
Y

k=j+1

(1 + rk)

×
N

X

k=(j+1)∨i
(2)
∗

rk

„

1 +

i
(1)
∗ −1
Y

`=k+1

(1 + r`)
N

X

`=(k+1)∨i
(1)
∗

r`

«–

. (3.3)
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Limiting probability of win — 19/20

1. In the following, to emphasize the dependence on N, we subscript “N”
and write P

(m)
N (win) and i

(m)
∗,N occasionally. Let R

(m)
N =

PN

j=i
(m)
∗,N

rj and

R
(m,2)
N =

PN

j=i
(m)
∗,N

r 2
j for m ∈ N .

2. For the maximum probability of win with m = 2, we have

P
(2)
N (win)> R

(1)
N e−R

(1)
N + e−R

(2)
N , (3.4)

P
(2)
N (win) < R

(1)
N e−R

(1)
N

+R
(1,2)
N

+ (1 + r
i
(1)
∗

R
(1)
N + r

i
(2)
∗

) e−R
(2)
N

+R
(2,2)
N . (3.5)

Furthermore, if R
(1)
N → 1, R

(2)
N → 3/2, R

(1,2)
N → 0 and R

(2,2)
N → 0 as

N → ∞, then

P
(2)
N (win) → e−1 + e−3/2 as N → ∞. (3.6)
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Conjectures on the probability of win — 20/20

We conjecture that, if R
(m)
N and R

(m,2)
N , m = 1, 2, . . ., have the same limits as

those for the CSP with multiple selection chances, then the limit of the
maximum probability of win is also consistent with that for the CSP; that is,

lim
N→∞

P
(m)
N (win) = lim

N→∞

m
X

j=1

i
(j)
∗

N
for m = 1, 2, . . ..

For instance, for the triple selection problem, our conjecture states that, if
R

(1)
N → 1, R

(2)
N → 3/2 and R

(3)
N → 47/24 with R

(m,2)
N → 0, m = 1, 2, 3 as

N → ∞, then
lim

N→∞
P

(3)
N (win) = e−1 + e−3/2 + e−47/24.
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