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In the previous report we give solutions for
such games with two and three possible
values of vector of liquidation prices. Here
we extend these solutions to the games
G(p) with arbitrary distributions p ∈ ∆(Z2)

with finite variances.

To define the optimal strategy of Player 1
we construct the symmetric representation
of probability distributions p ∈ Θ(k, l) over
the two-dimensional integer lattice with a
fixed integer expectation vector (k, l) as
convex combinations of extreme points of
the set Θ(k, l), i.e. distributions with not
more than three-point supports. This is
sufficient to give such representation for
the set Θ(0,0).



This representation is a straight generalization
of the analogous representation for distributions
p ∈ Θ(k) over one-dimensional integer lattice
with a fixed integer expectation, exploited
in Domansky and Kreps (2009). Consider
the set

Θ(0) = {p ∈ ∆(Z1) : Ep[u] = 0}.
The extreme points of the set Θ(0) are:
1) The degenerate distribution e0 with one-
point support {0};
2) distributions p0

k,l ∈ Θ(0) with two-point
supports {−l, k},

p0
k,l(−l) =

k

k + l
, p0

k,l(k) =
l

k + l
.

Any distribution p ∈ Θ(0) has the following
symmetric representation:

p = p(0) · e0 +
∞∑

k=1

∞∑
l=1

αk,l(p) · p0
k,l

with the coefficients

αk,l(p) =
k + l∑∞

t=1 t · p(t)
p(−l)p(k).



Here we give an analogous symmetric representation
of probability distributions p ∈ Θ(0,0), where

Θ(0,0) = {p ∈ ∆(Z2) : Ep[u] = 0,Ep[v] = 0},

as convex combinations of extreme points
of the set Θ(0,0), i.e. one-, two-, and
three-point distributions.

a) Put p1 = p(0,0)e0, where e0 ∈ Θ(0,0)
is the degenerate distribution. This is one-
point part of distribution p ∈ Θ(0,0).

b) The support of two-point distribution
p ∈ Θ(0,0) is situated over a straight line
passing through (0,0). Such line is uniquely
defined with a point w = (u, v) ∈ Z2, v ≥ 0
on it, with (u, v) being relatively prime.
Let W ⊂ Z2 be the set of such points
(including (1,0) but not (−1,0)).

Let p0
wk,−wl ∈ Θ(0,0), k, l = 1,2, . . ., be

the distribution with the two-point support
{−l · w, k · w}.



Put m−(pw) =
∑∞

k=1 k · p(−k · w),

m+(pw) =
∞∑

k=1

k · p(k · w).

Here m(pw) = −m−(pw) + m+(pw) is the
central moment of the part pw of distribution
p ∈ Θ(0,0), lying on the straight line passing
through (0,0) and w.

For any k ∈ N, w ∈ W , put

p2(−k · w) =
p(−k · w) ·m+(pw)

m−(pw) ∨m+(pw)
,

p2(k · w) =
p(k · w) ·m−(pw)

m−(pw) ∨m+(pw)
,

where m−
w(p)∨m+

w (p) = max(m−
w(p), m+

w (p)).

The substochastic distribution p2 ∈ P2,
where P2 is the class of distributions, such
that the moment on any straight line passing
through (0,0) is equal to zero. They are
represented as combinations of two-point
distributions.



Proposition 1. The part p2 of distribution
p ∈ Θ(0,0) has the following representation
as a combination of two-point distributions:

p2 =
∑

w∈W

∞∑
k,l=1

αwk,−wl(p) · p0
wk,−wl

with the coefficients

αwk,−wl(p) =
k + l∑∞

t=1 t · p2(t · w)
p2(−l·w)p2(k·w)

=
k + l

m−
w(p) ∨m+

w (p)
p(−l · w)p(k · w).



c) The substochastic distribution

p3 = p− p1 − p2 ∈ P3,

where P3 is the class of distributions, such
that, for any straight line passing through
(0,0), they have only one loaded half-line.
They are represented as combinations of
three-point distributions.

Let three points z1 = (x1, y1), z2 = (x2, y2),
z3 = (x3, y3) can be enumerated so that

det[zi, zi+1] > 0, i = 1,2,3, (1)

where det[zi, zi+1] = xi · yi+1− yi ·xi+1. All
arithmetical operations with subscripts are
fulfilled modulo 3. Then there is a unique
distribution p0

z1,z2,z3
∈ Θ3(0,0) with three-

point support (z1, z2, z3), namely

p0
z1,z2,z3

(zi) =
det[zi+1, zi+2]∑3
j=1 det[zj, zj+1]

.

Let ∆0 be the set of three-point sets (z1, z2, z3)
satisfying (1).



Let ∆0(z) be the set of ordered pairs (z2, z3),
such that det[z2, z3] > 0 and the set (z, z2, z3)
belongs to ∆0,

Lemma. For any distribution p ∈ P3∑
(z2,z3)∈∆0(z)

p(z2)p(z3) det[z2, z3] = Φ(p),

does not depend on z, i.e. this is an invariant
of the distribution p.

This is a two-dimensional analog of the
fact that for p ∈ Θ(0) ⊂ ∆(Z1) the equality∑∞

t=1 t · p(t) =
∑∞

t=1 t · p(−t) holds.

Proposition 2. The part p3 of distribution
p ∈ Θ(0,0) has the following representation
as a combination of three-point distributions:

p3 =
∑
∆0

αz1,z2,z3(p) · p0
z1,z2,z3

with the coefficients

αz1,z2,z3(p) =

∑3
j=1 det[zj, zj+1]

Φ(p3)
p3(z1)p

3(z2)p
3(z3).



Corollary. Any linear function f over the
set Θ(0,0) has the following representation
as a convex combination of its values over
the extreme points of Θ(0,0):

f(p) = p(0,0)f(e0)+
∑

w∈W

∞∑
k,l=1

αwk,−wl(p)·f(p0
wk,−wl)

+
∑

(z1,z2,z3)∈∆0

αz1,z2,z3(p) · f(p0
z1,z2,z3

)

with the coefficients αwk,−wl(p) and αz1,z2,z3(p)

given by Propositions 1 and 2.



Now we construct optimal strategies for
Player 1 making use of the constructed
decomposition for the initial distribution p.

a) If the state chosen by chance move is
(0,0), then Player 1 stops the game.

Let the state chosen by chance move be
z = k · w, where k ∈ Z, k 6= 0, and w ∈ W .
For definiteness let be k > 0.

b) If m+(pw) ≤ m−(pw), then the state z

belongs to the support of the distribution
p2 and does not belong to the support
of the distribution p3. Player 1 chooses a
point z2 = −l · w by means of lottery with
probabilities

q(−l · w) =
l · p(−l · w)

m−(pw)
,

and plays the optimal strategy σ∗(·|z) for
the state z in the two-point game G(p0

wk,−wl).



c) Otherwise, if m+(pw) > m−(pw), then
the state z belongs to the support of the
both distributions p2 and p3 with probabilities

m−(pw)

m+(pw)
and 1−

m−(pw)

m+(pw)

correspondingly. Player 1 chooses a distributions
p2 or p3 by means of lottery with these
probabilities.

d) If the distribution p2 is chosen, then
further Player 1 acts as in the point b).

e) If the distribution p3 is chosen, then
Player 1 chooses a pair (z2, z3) ∈ ∆0(w)

by means of lottery with probabilities

q(z2, z3) =
p3(z2)p

3(z3) · det[z2, z3]

Φ(p3)
,

and plays the optimal strategy σ∗(·|z) for
the state z in the three-point game G(p0

z,z2,z3
).



As the optimal strategies σ∗ ensure Player
1 the gains equal to one half of the sum of
component variances Dp[u] + Dp[v] in the
two and three-point games and as the sum
of component variances is a linear function
over Θ(0,0) ∩ M2, where M2 is the class
of distributions with finite second moment,
we obtain the following result:

Theorem. For any distribution p ∈ M2 the
compound strategy depicted above ensures
Player 1 the gain 1/2 · (Dp[u] + Dp[v]) in
the game G(p).


