American options with guarantee

Sören Christensen, Albrecht Irle

Mathematisches Seminar, CAU Kiel

Outline

2 Diffusions as a driving process

Models with jumps

Outline

Diffusions as a driving process

- 3 Models with jumps
- 4 Conclusion

Problem

Options with guarantee

Guarantee a payoff that is a fraction of the starting value

Problem

Options with guarantee

Guarantee a payoff that is a fraction of the starting value, i.e. payoff

 $g(X_{\tau}) \vee h(X_0)$

Problem

Options with guarantee

Guarantee a payoff that is a fraction of the starting value, i.e. payoff

 $g(X_{\tau}) \vee h(X_0)$

g: gain function, h: guarantee function g, h increasing, $h \leq g$

$$v(x) = \sup_{\tau} E_x(e^{-r\tau} g(X_{\tau}) \qquad \qquad 1_{\{\tau < \infty\}}), \quad x \in E$$

$$v(x) = \sup_{\tau} E_x(e^{-r\tau}[g(X_{\tau}) \lor h(X_0)]1_{\{\tau < \infty\}}), \ x \in E$$

$$v(x) = \sup_{\tau} E_x(e^{-r\tau}[g(X_{\tau}) \vee h(X_0)]1_{\{\tau < \infty\}}), \ x \in E$$

• Structure of the optimal strategies?

$$v(x) = \sup_{\tau} E_x(e^{-r\tau}[g(X_{\tau}) \vee h(X_0)]1_{\{\tau < \infty\}}), \ x \in E$$

- Structure of the optimal strategies?
- Explicit determination?

Outline

2 Diffusions as a driving process

- 3 Models with jumps
- 4 Conclusion

X: 1-dim. regular diffusion process on an interval *I*.

X: 1-dim. regular diffusion process on an interval I. Let ψ_+ , ψ_- be the minimal r-harmonic functions, i.e.

$$\psi_{+}(x) = \begin{cases} E_{x}(e^{-r\tau_{a}}\mathbf{1}_{\{\tau_{a}<\infty\}}), & x \leq a\\ [E_{a}(e^{-r\tau_{x}}\mathbf{1}_{\{\tau_{x}<\infty\}})]^{-1}, & x > a \end{cases}$$

and

$$\psi_{-}(x) = \begin{cases} [E_{a}(e^{-r\tau_{x}}\mathbf{1}_{\{\tau_{x}<\infty\}})]^{-1}, & x \leq a\\ E_{x}(e^{-r\tau_{a}}\mathbf{1}_{\{\tau_{a}<\infty\}}), & x > a \end{cases}$$

for a fixed point $a \in int(I)$.

X: 1-dim. regular diffusion process on an interval I. Let ψ_+ , ψ_- be the minimal r-harmonic functions, i.e.

$$\psi_{+}(x) = \begin{cases} E_{x}(e^{-r\tau_{a}}\mathbf{1}_{\{\tau_{a}<\infty\}}), & x \leq a\\ [E_{a}(e^{-r\tau_{x}}\mathbf{1}_{\{\tau_{x}<\infty\}})]^{-1}, & x > a \end{cases}$$

and

$$\psi_{-}(x) = \begin{cases} [E_a(e^{-r\tau_x} \mathbb{1}_{\{\tau_x < \infty\}})]^{-1}, & x \le a \\ E_x(e^{-r\tau_a} \mathbb{1}_{\{\tau_a < \infty\}}), & x > a \end{cases}$$

for a fixed point $a \in int(I)$. ψ_+ resp. ψ_- are the (up to a factor) unique increasing resp. decreasing solutions to

$$(A-r)\psi=0$$

and each solution ψ can be written as $\psi = \lambda_1 \psi_+ + \lambda_2 \psi_-$ for some $\lambda_1, \lambda_2 \ge 0.$

Basic tool for problems without guarantee (C., I. 2010):

The optimal stopping set for

$$v(x) = \sup_{\tau} E_x(e^{-r\tau} \tilde{g}(X_{\tau}) \mathbb{1}_{\{\tau < \infty\}})$$

is given by the maximum points of

$$rac{ ilde{g}}{\lambda\psi_++(1-\lambda)\psi_-}, \qquad \lambda\in [0,1].$$

Corollary

Let $x \in I$ and assume there exist $y_1 \leq x \leq y_2$ and $\lambda_1, \lambda_2 \in [0, 1]$ such that

$$y_i = argmax rac{ ilde{g}}{\lambda_i \psi_+ + (1 - \lambda_i) \psi_-} \qquad ext{for } i = 1, 2.$$

Then there exist $x_1 \leq x \leq x_2$ such that $v(x) = E_x(e^{-r\tau}\tilde{g}(X_{\tau}))$, where

$$\tau = \inf\{t \ge 0 : X_t \le x_1 \text{ or } X_t \ge x_2\}.$$

Corollary

Let $x \in I$ and assume there exist $y_1 \leq x \leq y_2$ and $\lambda_1, \lambda_2 \in [0,1]$ such that

$$y_i = argmax rac{ ilde{g}}{\lambda_i \psi_+ + (1 - \lambda_i) \psi_-} \qquad ext{for } i = 1, 2.$$

Then there exist $x_1 \le x \le x_2$ such that $v(x) = E_x(e^{-r\tau}\tilde{g}(X_{\tau}))$, where

$$\tau = \inf\{t \ge 0 : X_t \le x_1 \text{ or } X_t \ge x_2\}.$$

Proof (Corollary): By the basic tool y_1 and y_2 are in the stopping set *S*. Hence

$$x_1 := \sup\{y \in S : y \le x\} \text{ and } x_2 := \inf\{y \in S : y \ge x\}$$

are in S too, i.e. $\tau_S = \tau$ under P_x and since the interval $[x_1, x_2]$ is compact the assertion holds.

Theorem

Consider the optimal stopping problem with guarantee

$$v(x) = \sup_{\tau} E_x(e^{-r\tau}[g(X_{\tau}) \lor h(X_0)] 1_{\{\tau < \infty\}}), \ x \in E.$$

Theorem

Consider the optimal stopping problem with guarantee

$$v(x) = \sup_{\tau} E_x(e^{-r\tau}[g(X_{\tau}) \vee h(X_0)]1_{\{\tau < \infty\}}), \ x \in E.$$

Assume $\lim_{y\to b_r} \frac{g(y)}{\psi_+(y)} = 0.$

Theorem

Consider the optimal stopping problem with guarantee

$$v(x) = \sup_{\tau} E_x(e^{-r\tau}[g(X_{\tau}) \vee h(X_0)] \mathbb{1}_{\{\tau < \infty\}}), \ x \in E.$$

Assume $\lim_{y\to b_r} \frac{g(y)}{\psi_+(y)} = 0$. For each starting point x with h(x) > 0 there exist $a_x \le x \le b_x$ such that

$$\tau_x^* = \inf\{t \ge 0 : X_t = a_x \text{ or } X_t = b_x\}$$

is optimal.

Proof of the Theorem

It is easy to see that for λ near 1

$$\sup_{y \leq x} \frac{g(y) \lor h(x)}{\lambda \psi_+(y) + (1-\lambda)\psi_-(y)} > \sup_{y \geq x} \frac{g(y) \lor h(x)}{\lambda \psi_+(y) + (1-\lambda)\psi_-(y)}$$

Therefore by assumption on the boundary behavior there exist $\tilde{a}_x \leq x$ and λ_1 such that

$$ilde{\mathsf{a}}_{\mathsf{x}} = \operatorname{argmax}_{\mathsf{y}} rac{\mathsf{g}(\mathsf{y}) ee \mathsf{h}(\mathsf{x})}{\lambda_1 \psi_+(\mathsf{y}) + (1-\lambda_1) \psi_-(\mathsf{y})}.$$

The same argument for λ near 0 provides $\tilde{b}_x \ge x$ with

$$ilde{b}_{\mathsf{x}} = \operatorname{argmax}_{y} rac{g(y) \lor h(x)}{\lambda_{2}\psi_{+}(y) + (1-\lambda_{2})\psi_{-}(y)}.$$

The assertions follows from the Corollary.

Explicit determination of the optimal boundaries

Assume g(x) = h(x). Write

$$F(x, a, b) := E_x(e^{-r\tau_{a,b}}[g(X_{\tau_{a,b}}) \vee g(x)]1_{\{\tau_{a,b} < \infty\}}),$$

where $\tau_{a,b} = \inf\{t \ge 0 : X_t = a \text{ or } X_t = b\}$. (a_x, b_x) is maximum point of $F(x, \cdot)$.

Explicit determination of the optimal boundaries

Assume g(x) = h(x). Write

$$F(x, a, b) := E_x(e^{-r\tau_{a,b}}[g(X_{\tau_{a,b}}) \vee g(x)]1_{\{\tau_{a,b} < \infty\}}),$$

where $\tau_{a,b} = \inf\{t \ge 0 : X_t = a \text{ or } X_t = b\}.$ (a_x, b_x) is maximum point of $F(x, \cdot)$.

Reduction to ODE

$$\frac{d}{dx}(a_x, b_x) = -(D_{2,3}^2 F(x, a_x, b_x))^{-1} D_1 D_{2,3} F(x, a_x, b_x).$$

Example: GBM-Stock with guarantee

Black-Scholes market: X is GBM, g(x) = h(x) = x.

Example: GBM-Stock with guarantee

Black-Scholes market: X is GBM, g(x) = h(x) = x.

$$\tau_x^* = \inf\{t \ge 0 : ax \le X_t \text{ or } X_t \le bx\},$$
$$v(x) = cx.$$

Outline

2 Diffusions as a driving process

4 Conclusion

Lévy processes

Now let X be a Lévy process.

Lévy processes

Now let X be a Lévy process.

Proposition

(i) For all $x \in \mathbb{R}$ there exists $a_x \in [-\infty, x]$ such that

$$S_{x} \cap (-\infty, x] = (-\infty, a_{x}].$$

(ii) For all $x \in \mathbb{R}$ it holds that

$$S_x \cap [x,\infty) \neq \emptyset.$$

Spectrally negative Lévy processes

For analytic tractability: X is spectrally negative, i.e. it has no upward jumps, h = g.

Spectrally negative Lévy processes

For analytic tractability: X is spectrally negative, i.e. it has no upward jumps, h = g.

Theorem

For each starting point x with h(x) > 0 there exist $-\infty < a_x \le x \le b_x < \infty$ such that

$$\tau_x^* = \inf\{t \ge 0 : X_t \le a_x \text{ or } X_t = b_x\}$$

is optimal.

Outline

1 Introduction

Diffusions as a driving process

3 Models with jumps

• We studied options that guarantee a payoff depending on the starting value.

- We studied options that guarantee a payoff depending on the starting value.
- They lead to starting point dependend two-sided stopping strategies.

- We studied options that guarantee a payoff depending on the starting value.
- They lead to starting point dependend two-sided stopping strategies.
- Explicit solutions can be achieved for diffusions and (some) Lévy processes using ODEs.

- We studied options that guarantee a payoff depending on the starting value.
- They lead to starting point dependend two-sided stopping strategies.
- Explicit solutions can be achieved for diffusions and (some) Lévy processes using ODEs.

Thank you for your attention!