Two-sided mate choice problem

Vladimir Mazalov, Anna Ivashko

Institute of Applied Mathematical Research
Karelian Research Center of RAS
Petrozavodsk, Russia

Two-sided mate choice problem

- Mating model, job search model
- The game with $n+1$ stages
- $X=[0,1]$ - females, $Y=[0,1]$ - males. The quality of the members from each group x, y has uniform distribution
- If free individuals accept each other at the i-th stage they leave the game and each receives as a payoff the partner's quality.
- At the last stage $n+1$ the individuals who don't create the pair receive zero
- Each player aims to maximize her/his expected payoff

Two-stage game

z_{1} - the threshold of the acceptance at the first stage

$$
f_{1}(x)= \begin{cases}\frac{1}{z_{1}+\left(1-z_{1}\right) z_{1}}, & x \in\left[0, z_{1}\right), \\ \frac{z_{1}+\left(1-z_{1}\right) z_{1}}{z_{1}}, & x \in\left[z_{1}, 1\right] .\end{cases}
$$

The total number of individuals in each group at the second stage is equal to $z_{1}+\left(1-z_{1}\right) z_{1}$.

If a player doesn't mate at the first stage then his expected payoff (mean quality of the partner) at the second stage is

$$
\begin{gathered}
E x_{2}=\int_{0}^{1} x f_{1}(x) d x=\frac{1+z_{1}-z_{1}^{2}}{2\left(2-z_{1}\right)} \\
z_{1}=\frac{1+z_{1}-z_{1}^{2}}{2\left(2-z_{1}\right)}
\end{gathered}
$$

It's solution $z_{1}=(3-\sqrt{5}) / 2 \approx 0.382$.

The game with $n+1$ stages

z_{i} - the threshold of the acceptance for the i-th stage $(i=1,2, \ldots, n)$, $0<z_{n} \leq z_{n-1} \leq \ldots \leq z_{1} \leq z_{0}=1$.
$N_{0}=1 ;$
$N_{1}=z_{1}+\left(1-z_{1}\right) z_{1} ;$

After the i-th stage obtain

$$
\begin{equation*}
N_{i}=2 z_{i}-\frac{z_{i}^{2}}{N_{i-1}}, i=1, \ldots, n \tag{1}
\end{equation*}
$$

After the i-th stage the distribution of players by quality has the density of the following form:

$$
f_{i}(x)=\left\{\begin{array}{l}
\frac{1}{N_{i}}, 0 \leq x<z_{i} \\
\prod_{j=k}^{i-1} \frac{z_{j+1}}{N_{j}} \frac{1}{N_{i}}, z_{k+1} \leq x<z_{k}, k=i-1, \ldots, 1
\end{array}\right.
$$

where $i=1, \ldots, n$.
$v_{i}(x), i=1, \ldots, n$ the optimal expected payoff of the player after the i-th stage if he meets a partner with quality x

Hence,

$$
v_{n}(x)=\max \left\{x, \int_{0}^{1} y f_{n}(y) d y\right\}
$$

Then function $v_{n}(x)$ has the following form

$$
v_{n}(x)=\left\{\begin{array}{l}
z_{n}, 0 \leq x<z_{n} \\
x, z_{n} \leq x \leq 1
\end{array}\right.
$$

the optimality equation after the i-th stage

$$
v_{i}(x)=\max \left\{x, E v_{i+1}\left(x_{i+1}\right)\right\}
$$

Theorem 1 Nash equilibrium in the ($n+1$)-stage two-sided mate choice game is determined by the sequence of thresholds $z_{i}, i=1, \ldots, n$, which satisfy the recurrence relation

$$
z_{1}=\frac{1}{a_{1}}\left(1-\sqrt{1-a_{1}^{2}}\right), \quad z_{i}=a_{i} z_{i-1}, i=2, \ldots, n
$$

where coefficients a_{i} satisfy the equations

$$
\begin{equation*}
a_{i}=\frac{2}{3-a_{i+1}^{2}}, i=1, \ldots, n-1 \tag{2}
\end{equation*}
$$

and $a_{n}=2 / 3$.
Thresholds in the two-sided $\left(z_{i}\right)$ and in the one-sided $\left(\bar{z}_{i}\right)$ problem for $n=10$.

i	1	2	3	4	5	6	7	8	9	10
a_{i}	0.940	0.934	0.927	0.918	0.907	0.891	0.870	0.837	0.782	0.666
z_{i}	0.702	0.656	0.608	0.559	0.507	0.452	0.398	0.329	0.308	0.205
\bar{z}_{i}	0.861	0.850	0.836	0.820	0.800	0.775	0.742	0.695	0.625	0.5

Figure 1. $a_{i}, n=100$

Figure 2. $z_{i}, n=100$

For $n \rightarrow \infty \quad a^{\prime}=a-\frac{2}{3-a^{2}}, a(n)=\frac{2}{3}$.

$$
\frac{1}{9}\left(\frac{6}{a-1}+8 \ln \frac{1-a}{a+2}\right)=t+\frac{1}{9}\left(-18-9 n+\ln \frac{8}{3^{9}}\right) .
$$

This equation estimates a_{i} from below.

Figure 3. Blue - a_{i}, Black $-a(t), n=100$

$$
a_{i} \geq 1-\frac{2}{3(n-i+2)}
$$

Two-sided mate choice problem with arriving flow

- The game with $n+1$ stages
- $X=[0,1]$ - females, $Y=[0,1]$ - males. The quality of the members from each group x, y has uniform distribution
- If free individuals accept each other at the i-th stage they leave the game and each receives as a payoff the partner's quality.
- At the last stage $n+1$ the individuals who don't create the pair receive zero
- There is a stream Δ_{i} of the new individuals at each stage
- Each player aims to maximize her/his expected payoff

Two-stage game

z_{1} - the threshold of the acceptance at the first stage
$\Delta_{1}=\left(1-z_{1}\right)^{2} \alpha$, parameter α is birth rate, $\alpha \geq 0$.

The total number of individuals in each group at the second stage is equal to $N_{1}=z_{1}+\left(1-z_{1}\right) z_{1}+\Delta_{1}$.

The density of the distribution of the qualities at the second stage is following

$$
f_{1}(x)= \begin{cases}\frac{1+\Delta_{1}}{N_{1}}, & 0 \leq x<z_{1} \\ \frac{z_{1}+\Delta_{1}}{N_{1}}, & z_{1} \leq x \leq 1\end{cases}
$$

As before we find the optimal value z_{1} from the condition

$$
z_{1}=\int_{0}^{1} x f_{1}(x) d x
$$

The equation for optimal threshold z_{1}

$$
\left(1-z_{1}\right)^{2} \alpha=\frac{z_{1}\left(1-3 z_{1}+z_{1}^{2}\right)}{2 z_{1}-1}
$$

Optimal thresholds z_{1} in the model with arrival for various α

α	0	0.1	0.5	1	5	10	100	1000
z_{1}	0.382	0.391	0.414	0.430	0.469	0.481	0.498	0.5

Table presents the numerical results for the optimal values z_{1} and z_{2} for various α (three-stage game).

α	0	0.1	0.5	1	5	10	100	1000
z_{1}	0.482	0.498	0.529	0.548	0.590	0.603	0.622	0.625
z_{2}	0.322	0.346	0.391	0.416	0.467	0.480	0.498	0.5

The case of $n+1$ stages

z_{i} - the threshold of the acceptance for the i-th stage $(i=1,2, \ldots, n)$ After the i-th stage obtain

$$
\begin{aligned}
& N_{1}=z_{1}+\left(1-z_{1}\right) z_{1}+\Delta_{1} \\
& N_{2}=z_{2}\left(1+\Delta_{1}\right)+\frac{\left(z_{1}-z_{2}\right)\left(1+\Delta_{1}\right) z_{2}\left(1+\Delta_{1}\right)}{N_{1}}+\frac{\left(1-z_{1}\right)\left(z_{1}+\Delta_{1}\right) z_{2}\left(1+\Delta_{1}\right)}{N_{1}}+\Delta_{2}
\end{aligned}
$$

$$
\begin{equation*}
N_{i}=z_{i}\left(1+\sum_{j=1}^{i-1} \Delta_{j}\right)\left[2-\frac{z_{i}\left(1+\sum_{j=1}^{i-1} \Delta_{j}\right)}{N_{i-1}}\right]+\Delta_{i} \tag{3}
\end{equation*}
$$

and Δ_{i} is determined by $\Delta_{i}=\alpha \sum_{j=1}^{i} \bar{N}_{j}$, where \bar{N}_{j} is the number of individuals who form the pair at the j-th stage.

The density of the distribution at the stage $i+1(i=1, \ldots, n)$

Let $v_{i}(x), i=1, \ldots, n$ be the optimal expected payoff of a player from population Y if he meets a partner with quality x.
$v_{n}(x)=\max \left\{x, \int_{0}^{1} y f_{n}(y) d y\right\}$,
$v_{i}(x)=\max \left\{x, E v_{i+1}\left(x_{i+1}\right)\right\}, i=1, \ldots, n-1$.

Theorem 2 Nash equilibrium in the $(n+1)$-stage two-sided mate choice game with arriving individuals is determined by the sequence of thresholds $z_{i}, i=1, \ldots, n$, which satisfies the recurent equations

$$
\left\{\begin{align*}
z_{n} & =\int_{0}^{1} x f_{n}(y) d y \tag{5}\\
z_{i} & =\int_{0}^{z_{i+1}} z_{i+1} f_{i}(y) d y+\int_{z_{i+1}}^{1} y f_{i}(y) d y, i=1,2, \ldots, n-1
\end{align*}\right.
$$

where $f_{i}(x)$ satisfy (4).

Let us find the asymptotic behavior of the optimal thresholds as $\alpha \rightarrow \infty$.

Lemma 1 For all $i=1, \ldots, n \lim _{\alpha \rightarrow \infty} f_{i}(x)=1$.
Theorem 2 with Lemma 1 gives immediately the Corollary.

Corollary 1 As $\alpha \rightarrow \infty$ the optimal thresholds $z_{i}(i=1, \ldots, n)$ satisfy the recurrent formulas

$$
z_{i}=\frac{1+z_{i+1}^{2}}{2}, i=1, \ldots, n-1 ; z_{n}=1 / 2
$$

References

[1] Alpern S., Reyniers D. Strategic mating with common preferences. Journal of Theoretical Biology, 2005, 237, 337-354.
[2] McNamara J., Collins E. The job search problem as an employercandidate game. J. Appl. Prob., 1990, 28, pp. 815-827.
[3] Eriksson K., Strimling P., Sjostrand J. Optimal expected rank in a two-sided secretary problem, Oper. Res., 2007, Vol. 55, No 5, 921931.
[4] Mazalov V., Falko A. Nash equilibrium in two-sided mate choice problem. International Game TheorybReview, Vol. 10, No 4, 2008, 421-435.

