Two-sided mate choice problem

Vladimir Mazalov, Anna Ivashko

Institute of Applied Mathematical Research Karelian Research Center of RAS

Petrozavodsk, Russia

Two-sided mate choice problem

- Mating model, job search model
- The game with n + 1 stages
- X = [0, 1] females, Y = [0, 1] males. The quality of the members from each group x, y has uniform distribution
- If free individuals accept each other at the *i*-th stage they leave the game and each receives as a payoff the partner's quality.
- At the last stage n + 1 the individuals who don't create the pair receive zero
- Each player aims to maximize her/his expected payoff

Two-stage game

 z_1 — the threshold of the acceptance at the first stage

The total number of individuals in each group at the second stage is equal to $z_1 + (1 - z_1)z_1$.

If a player doesn't mate at the first stage then his expected payoff (mean quality of the partner) at the second stage is

$$Ex_2 = \int_0^1 x f_1(x) dx = \frac{1 + z_1 - z_1^2}{2(2 - z_1)}.$$

$$z_1 = \frac{1 + z_1 - z_1^2}{2(2 - z_1)}.$$

It's solution $z_1 = (3 - \sqrt{5})/2 \approx 0.382$.

The game with n + 1 stages

 z_i — the threshold of the acceptance for the *i*-th stage (i = 1, 2, ..., n), $0 < z_n \le z_{n-1} \le ... \le z_1 \le z_0 = 1$.

 $N_0 = 1;$

 $N_1 = z_1 + (1 - z_1)z_1;$

After the *i*-th stage obtain

$$N_i = 2z_i - \frac{z_i^2}{N_{i-1}}, \ i = 1, \dots, n.$$
(1)

After the *i*-th stage the distribution of players by quality has the density of the following form:

$$f_i(x) = \begin{cases} \frac{1}{N_i}, & 0 \le x < z_i, \\ \prod_{j=k}^{i-1} \frac{z_{j+1}}{N_j} \frac{1}{N_i}, & z_{k+1} \le x < z_k, & k = i-1, ..., 1, \end{cases}$$

where i = 1, ..., n.

 $v_i(x), i = 1, ..., n$ the optimal expected payoff of the player after the *i*-th stage if he meets a partner with quality x

Hence,

$$v_n(x) = \max\{x, \int_0^1 y f_n(y) dy\}.$$

Then function $v_n(x)$ has the following form

$$v_n(x) = \begin{cases} z_n, \ 0 \le x < z_n, \\ x, \ z_n \le x \le 1. \end{cases}$$

the optimality equation after the *i*-th stage

$$v_i(x) = \max\{x, Ev_{i+1}(x_{i+1})\}$$

Theorem 1 Nash equilibrium in the (n + 1)-stage two-sided mate choice game is determined by the sequence of thresholds z_i , i = 1, ..., n, which satisfy the recurrence relation

$$z_1 = \frac{1}{a_1} \left(1 - \sqrt{1 - a_1^2} \right), \ z_i = a_i z_{i-1}, \ i = 2, ..., n,$$

where coefficients a_i satisfy the equations

$$a_i = \frac{2}{3 - a_{i+1}^2}, \ i = 1, \dots, n - 1, \tag{2}$$

and $a_n = 2/3$.

Thresholds in the two-sided (z_i) and in the one-sided (\bar{z}_i) problem for n = 10.

i	1	2	3	4	5	6	7	8	9	10
a_i	0.940	0.934	0.927	0.918	0.907	0.891	0.870	0.837	0.782	0.666
z_i	0.702	0.656	0.608	0.559	0.507	0.452	0.398	0.329	0.308	0.205
\overline{z}_i	0.861	0.850	0.836	0.820	0.800	0.775	0.742	0.695	0.625	0.5

For
$$n \to \infty$$
 $a' = a - \frac{2}{3-a^2}$, $a(n) = \frac{2}{3}$.
$$\frac{1}{9} \left(\frac{6}{a-1} + 8 \ln \frac{1-a}{a+2} \right) = t + \frac{1}{9} \left(-18 - 9n + \ln \frac{8}{3^9} \right).$$

This equation estimates a_i from below.

Figure 3. Blue — a_i , Black — a(t), n = 100

$$a_i \ge 1 - \frac{2}{3(n-i+2)}$$

Two-sided mate choice problem with arriving flow

- The game with n + 1 stages
- X = [0, 1] females, Y = [0, 1] males. The quality of the members from each group x, y has uniform distribution
- If free individuals accept each other at the *i*-th stage they leave the game and each receives as a payoff the partner's quality.
- At the last stage n + 1 the individuals who don't create the pair receive zero
- There is a stream Δ_i of the new individuals at each stage
- Each player aims to maximize her/his expected payoff

Two-stage game

 z_1 — the threshold of the acceptance at the first stage

 $\Delta_1 = (1 - z_1)^2 \alpha$, parameter α is birth rate, $\alpha \ge 0$.

The total number of individuals in each group at the second stage is equal to $N_1 = z_1 + (1 - z_1)z_1 + \Delta_1$.

The density of the distribution of the qualities at the second stage is following

$$f_1(x) = \begin{cases} \frac{1+\Delta_1}{N_1}, & 0 \le x < z_1; \\ \frac{z_1+\Delta_1}{N_1}, & z_1 \le x \le 1. \end{cases}$$

As before we find the optimal value z_1 from the condition

$$z_1 = \int\limits_0^1 x f_1(x) dx.$$

The equation for optimal threshold z_1

$$(1-z_1)^2 \alpha = \frac{z_1(1-3z_1+z_1^2)}{2z_1-1}.$$

Optimal thresholds z_1 in the model with arrival for various α

α	0	0.1	0.5	1	5	10	100	1000
z_1	0.382	0.391	0.414	0.430	0.469	0.481	0.498	0.5

Table presents the numerical results for the optimal values z_1 and z_2 for various α (three-stage game).

α	0	0.1	0.5	1	5	10	100	1000
z_1	0.482	0.498	0.529	0.548	0.590	0.603	0.622	0.625
z_2	0.322	0.346	0.391	0.416	0.467	0.480	0.498	0.5

The case of n + 1 stages

 z_i — the threshold of the acceptance for the *i*-th stage (i = 1, 2, ..., n)

After the *i*-th stage obtain

 $N_{1} = z_{1} + (1 - z_{1})z_{1} + \Delta_{1};$ $N_{2} = z_{2}(1 + \Delta_{1}) + \frac{(z_{1} - z_{2})(1 + \Delta_{1})z_{2}(1 + \Delta_{1})}{N_{1}} + \frac{(1 - z_{1})(z_{1} + \Delta_{1})z_{2}(1 + \Delta_{1})}{N_{1}} + \Delta_{2};$

$$N_{i} = z_{i} \left(1 + \sum_{j=1}^{i-1} \Delta_{j}\right) \left[2 - \frac{z_{i} \left(1 + \sum_{j=1}^{i-1} \Delta_{j}\right)}{N_{i-1}}\right] + \Delta_{i}, \quad (3)$$

and Δ_i is determined by $\Delta_i = \alpha \sum_{j=1}^i \bar{N}_j$, where \bar{N}_j is the number of individuals who form the pair at the *j*-th stage.

The density of the distribution at the stage i + 1 (i = 1, ..., n)

$$f_{i}(x) = \begin{cases} \frac{1+\sum_{j=1}^{i} \Delta_{j}}{N_{i}}, & 0 \leq x < z_{i}; \\ \frac{1+\sum_{j=1}^{i} \Delta_{j}}{N_{i}}, & 1+\sum_{j=1}^{i-1} \Delta_{j}, \\ \frac{1+\sum_{j=1}^{i-1} \Delta_{j}, \frac{j-1}{N_{i-1}} + \Delta_{i}}{N_{i}}, & z_{i} \leq x < z_{i-1}; \\ \frac{\left[\dots \left[[z_{1}+\Delta_{1}] \frac{z_{2}(1+\Delta_{1})}{N_{1}} + \Delta_{2} \right] \frac{z_{3}(1+\sum_{j=1}^{2} \Delta_{j})}{N_{2}} + \dots + \Delta_{i-1} \right] \frac{z_{i}(1+\sum_{j=1}^{i-1} \Delta_{j})}{N_{i-1}} + \Delta_{i}}{N_{i}}, & z_{1} \leq x \leq 1. \end{cases}$$

$$(4)$$

Let $v_i(x), i = 1, ..., n$ be the optimal expected payoff of a player from population Y if he meets a partner with quality x.

$$v_n(x) = \max\{x, \int_0^1 y f_n(y) dy\},\$$

$$v_i(x) = \max\{x, Ev_{i+1}(x_{i+1})\}, i = 1, ..., n - 1.$$

Theorem 2 Nash equilibrium in the (n + 1)-stage two-sided mate choice game with arriving individuals is determined by the sequence of thresholds z_i , i = 1, ..., n, which satisfies the recurrent equations

$$\begin{cases} z_n = \int_{0}^{1} x f_n(y) dy; \\ z_i = \int_{0}^{z_{i+1}} z_{i+1} f_i(y) dy + \int_{z_{i+1}}^{1} y f_i(y) dy, i = 1, 2, ..., n-1, \end{cases}$$
(5)

where $f_i(x)$ satisfy (4).

Let us find the asymptotic behavior of the optimal thresholds as $\alpha \to \infty$.

Lemma 1 For all i = 1, ..., n $\lim_{\alpha \to \infty} f_i(x) = 1$.

Theorem 2 with Lemma 1 gives immediately the Corollary.

Corollary 1 As $\alpha \to \infty$ the optimal thresholds z_i (i = 1, ..., n) satisfy the recurrent formulas

$$z_i = \frac{1 + z_{i+1}^2}{2}, i = 1, ..., n - 1; z_n = 1/2$$

References

[1] *Alpern S., Reyniers D.* Strategic mating with common preferences. Journal of Theoretical Biology, 2005, 237, 337–354.

[2] *McNamara J., Collins E.* The job search problem as an employercandidate game. J. Appl. Prob., 1990, 28, pp. 815–827.

[3] *Eriksson K., Strimling P., Sjostrand J.* Optimal expected rank in a two-sided secretary problem, Oper. Res., 2007, Vol. 55, No 5, 921–931.

[4] *Mazalov V., Falko A.* Nash equilibrium in two-sided mate choice problem. International Game TheorybReview, Vol. 10, No 4, 2008, 421–435.