Blackwell Prediction

Hans Rudolf Lerche

Department of Mathematical Stochastics
University of Freiburg

SOS, Petrozavodsk September 13, 2010 Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for d > 3

again)

portfolios

Classical Blackwell Prediction

Let x_1, x_2, x_3, \ldots be a infinite 0-1 sequence, not necessarily stationary or even random.

We wish to sequentially predict the sequence:

Guess x_{n+1} , knowing x_1, x_2, \ldots, x_n .

Of interest are algorithms which predict well for all 0-1 sequences.

One of them is the Blackwell algorithm.

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Jniversal cortfolios

Poforonoos

A prediction algorithm $y_1, y_2, y_3,...$ is a random 0-1 sequence with y_{n+1} being the predicted value of x_{n+1} . y_{n+1} may depend on $x_1, x_2, x_3,...,x_n$ and on some other random variables.

Some further notation:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
, the relative frequency of "1" in the sequence $x_1, x_2, x_3, \dots, x_n$,

$$\gamma_i = \mathbb{1}_{\{y_i = x_i\}},$$
 the success indicator,

$$\overline{\gamma}_n = \frac{1}{n} \sum_{i=1}^n \gamma_i$$
, the relative frequency of correct prediction.

Classical Blackwell Prediction

Prediction for $d \ge 3$

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Jniversal cortfolios

A plausible deterministic prediction scheme:

$$y_{n+1}^{0} = \begin{cases} 1 & \text{if } \overline{x}_{n} > \frac{1}{2} \\ 0 & \text{if } \overline{x}_{n} \leq \frac{1}{2} \end{cases} \quad \text{for } n \geq 1,$$
$$y_{1}^{0} = 1.$$

Its strength: Let $0 \le p \le 1$.

If $x_1, x_2, x_3, ...$ are independent Bernoulli (p), then for $(y_n^0; n \ge 1)$

$$\overline{\gamma}_n \to \max(p, 1-p) \text{ for } n \to \infty$$

by the law of large numbers. If p is known beforehand, one cannot do better asymptotically.

Its Weakness: For $1, 0, 1, 0, 1, 0, \dots$ $\overline{\gamma}_n = \frac{1}{n}$ for all $n \ge 1$.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Universal portfolios

Blackwell algorithm: Let $\mu_n = (\overline{x}_n, \overline{\gamma}_n) \in [0, 1]^2$ and

$$S = \{(x, y) \in [0, 1]^2 \mid y \ge \max(x, 1 - x)\}.$$

 y_{n+1} is chosen on the basis of μ_n according to the conditional probabilities

$$P(y_{n+1} = 1) = \begin{cases} 0 & \text{if } \mu_n \in D_1 \\ 1 & \text{if } \mu_n \in D_2 \\ w_n & \text{if } \mu_n \in D_3. \end{cases}$$

When μ_n is in the interior of S, y_{n+1} can be chosen arbitrarily. Let $y_1 = 0$.

Classical Blackwell Prediction

Prediction for $d \ge 3$

Blackwell's Minimax Theorem in Game Theory

Prediction or $d \geq 3$

Universal portfolios

d denotes the Euclidean distance in \mathbb{R}^2 and d(x, A) the distance from point x to the set A.

Theorem 1

For the Blackwell-algorithm applied to any infinite 0-1 sequence x_1, x_2, x_3, \ldots the sequence $(\mu_n; n \ge 1)$ converges almost surely to \mathcal{S} , i.e. $d(\mu_n, \mathcal{S}) \to 0$ as $n \to \infty$ almost surely.

Remark

The theorem has minimax character. For every 0-1 sequence the Blackwell-algorithm is at least as successful as for *iid* Bernoulli-variables. But for those it does the best possible.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Universal

Proof

Let $d_n = d(\mu_n, S)$.

Case 1: $\mu_n \in D_1$

Then
$$d_{n+1} = \frac{n}{n+1} d_n$$
.

Case 2: $\mu_n \in D_2$ Then $d_n = \frac{n}{n+1}d_n$.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Blackwell's
Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$

Universal portfolios

Case 3: $\mu_n \in D_3$

We have
$$\mu_{n+1} = \frac{n}{n+1} \mu_n + \frac{1}{n+1} (x_{n+1}, \gamma_{n+1})$$
 and

$$E(\gamma_{n+1} \mid x_{n+1} \text{ and past until } n) = \begin{cases} 1 - w_n & \text{if } x_{n+1} = 0 \\ w_n & \text{if } x_{n+1} = 1. \end{cases}$$

The conditional expectation of μ_{n+1} is closer to T than μ_n .

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Universal portfolios

Deferences

It holds (*) $E\left(d_{n+1}^2 \mid \text{past}(n)\right) \leq \left(\frac{n}{n+1}\right)^2 d_n^2 + \frac{1}{2(n+1)^2}$ for $\mu_n \in D_3$ and with $d_n = d(\mu_n, S)$. We have $\mu_{n+1} = \frac{n}{n+1} \mu_n + \frac{1}{n+1} (x_{n+1}, \gamma_n)$.

$$\begin{aligned} d_{n+1}^2 &= d \left(\mu_{n+1}, \mathcal{S} \right)^2 \leq \left\| \mu_{n+1} - \left(\frac{1}{2}, \frac{1}{2} \right) \right\|^2 \\ &= \left\| \frac{n}{n+1} \left(\mu_n - \left(\frac{1}{2}, \frac{1}{2} \right) \right) + \frac{1}{n+1} \left[\left(X_{n+1}, \gamma_{n+1} \right) - \left(\frac{1}{2}, \frac{1}{2} \right) \right] \right\|^2 \\ &= \left(\frac{n}{n+1} \right)^2 d_n^2 + \frac{1}{2(n+1)^2} + \frac{2n}{(n+1)^2} \left\langle \mu_n - \left(\frac{1}{2}, \frac{1}{2} \right), \left(X_{n+1}, \gamma_{n+1} \right) - \left(\frac{1}{2}, \frac{1}{2} \right) \right\rangle \end{aligned}$$

Classical Blackwell Prediction

Prediction for d > 3

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$

Jniversal

D - (-----

It holds (*) $E\left(d_{n+1}^2 \mid \mathsf{past}(n)\right) \leq \left(\frac{n}{n+1}\right)^2 d_n^2 + \frac{1}{2(n+1)^2}$ for $\mu_n \in D_3$ and with $d_n = d(\mu_n, \,\mathcal{S})$. We have $\mu_{n+1} = \frac{n}{n+1} \mu_n + \frac{1}{n+1} (x_{n+1}, \gamma_n)$.

$$\begin{aligned} d_{n+1}^2 &= d \left(\mu_{n+1}, \mathcal{S} \right)^2 \leq \left\| \mu_{n+1} - \left(\frac{1}{2}, \frac{1}{2} \right) \right\|^2 \\ &= \left\| \frac{n}{n+1} \left(\mu_n - \left(\frac{1}{2}, \frac{1}{2} \right) \right) + \frac{1}{n+1} \left[\left(X_{n+1}, \gamma_{n+1} \right) - \left(\frac{1}{2}, \frac{1}{2} \right) \right] \right\|^2 \\ &= \left(\frac{n}{n+1} \right)^2 d_n^2 + \frac{1}{2(n+1)^2} + \frac{2n}{(n+1)^2} \left\langle \mu_n - \left(\frac{1}{2}, \frac{1}{2} \right), \left(X_{n+1}, \gamma_{n+1} \right) - \left(\frac{1}{2}, \frac{1}{2} \right) \right\rangle \end{aligned}$$

Taking conditional expectation $E(. \mid x_{n+1}, \text{ past}(n))$ the bracket-term vanishes because of the orthogonality of T and $\mu_n - (\frac{1}{2}, \frac{1}{2})$ and we get (*). But (*) holds also for D_1 , D_2 and S.

Thus $(d_n^2; n \ge 1)$ is a nonnegative almost supermartingale with $E(d_n^2) \le \frac{1}{2n}$. Then $Z_n = d_n^2 + \sum_{i \ge 2} \frac{1}{2(i+1)^2}$ is a positive supermartingale with $EZ_n \to 0$.

The convergence theorem for supermartingales implies Theorem 1.

Classical Blackwell Prediction

Prediction for d > 3

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Universal portfolios

Remark

For general weights see the result of F. Riedel (2008).

Approachability of a convex set by an arithmetic mean

Let
$$\mu_n = \frac{1}{n} \sum_{i=1}^n z_i$$
; $z_i \in \mathcal{B}$.

If one can choose z_{n+1} such that it lies on $H(\mu_n)$, for all $n \ge 1$, then $d(\mu_n, S) \to 0$.

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Universal portfolios

Sequential prediction of $d \ge 3$ categories

Let x_1, x_2, x_3, \ldots be a infinite sequence with outcomes in

 $D = \{0, 1, \dots, d-1\}$, not necessarily random.

 y_1, y_2, y_3, \dots a sequence of predictors.

$$\overline{x}_n^{(j)} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i = j\}}, \quad j \in \{0, 1, \dots, d-1\},$$

and

$$\overline{X}_n = \left(\overline{X}_n^{(0)}, \overline{X}_n^{(1)}, \overline{X}_n^{(2)}, \dots, \overline{X}_n^{(d-1)}\right)$$

the relative frequencies of the selected categories up to *n*.

$$\overline{\gamma}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i = x_i\}}$$

the relative frequency of correct predictions.

Classical Blackwell

Prediction for d > 3

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Universal portfolios

$$\sum_{d-1} = \left\{ \left(q^{(0)}, q^{(1)}, q^{(2)}, \dots, q^{(d-1)} \right) \mid q^{(j)} \ge 0, \ \sum_{j=0}^{d-1} q^{(j)} = 1 \right\}$$

denotes the d-1 dimensional unit simplex in \mathbb{R}^d .

Question: Is there an algorithm such that

$$\overline{\gamma}_n \to \max\left(q^{(0)}, q^{(1)}, q^{(2)}, \dots, q^{(d-1)}\right)$$

for every sequence x_1, x_2, x_3, \dots with values in D?

Classical Blackwell Prediction

Prediction for $d \ge 3$

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$

Jniversal cortfolios

A plausible deterministic prediction scheme:

$$y_{n+1}^{0} = \min \left\{ k \in D \mid \overline{x}_{n}^{(k)} = \max \left(\overline{x}_{n}^{(0)}, \overline{x}_{n}^{(1)}, \overline{x}_{n}^{(2)}, \dots, \overline{x}_{n}^{(d-1)} \right) \right\}$$

$$y_{1}^{(0)} = d - 1$$

Its strength: Let $q \in \sum_{d-1}$.

If x_1, x_2, x_3, \ldots are independent multinomial (q), then for $(y_n^0; n \ge 1)$

$$\overline{\gamma}_n \to \max\left(q^{(0)}, q^{(1)}, q^{(2)}, \dots, q^{(d-1)}\right)$$

by the law of large numbers.

If q is known beforehand, one cannot do better asymptotically.

Its weakness: For the sequence

$$d-1, d-2, \ldots, 1, 0, d-1, d-2, \ldots, 1, 0, d-1, \ldots$$

we have $\overline{\gamma}_n = \frac{1}{n}$ for all $n \ge 1$.

Classical Blackwell

Prediction for d > 3

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Jniversal oortfolios

Open Problem: Let Σ_{d-1} denote the unit simplex in \mathbb{R}^d , let

$$W_d = \Sigma_{d-1} \times [0,1]$$

and

$$\mathscr{S} = \left\{ (q, \gamma) \in W_d \mid \gamma \geq \max \left(q^{(0)}, q^{(1)}, q^{(2)}, \dots, q^{(d-1)}\right) \right\}.$$

Does there exist a generalized Blackwell algorithm such that for every sequence x_1, x_2, x_3, \ldots with values in $D = \{0, 1, \ldots, d-1\}$, it holds

$$(\overline{X}_n, \overline{\gamma}_n) \to \mathscr{S}$$
?

But: The argument of Theorem 1 does not carry over directly since there are no right angles in \mathcal{S} (Condition (C1) of Theorem 2 below is not satisfied.).

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$

Jniversal cortfolios

SANTA BARBARA · SANTA CRUI

May 23, 1991

Dear Rudi,

My prediction result is Theorem I of the enclosed paper,

applied to $S = \underbrace{0 \leq x, y \leq 1}_{y \geq \max(x, 1 - x)}$

 $M = \begin{cases} (0,1) & (1,0) \\ (0,0) & (1,1) \end{cases}.$

Player I picks a now of M (his prediction, On1) and Pleyr II picks a coldmn (what recurs On1) The first coordinate tells what recours, and The signal coordinate tells whether I is correct. Plays I, in a series of plays, is trying To force the array point into S.

I don't know whether Theorem I, applied in the case to >2, applies to S = V3 max(U1,-,Un) or not. Let me know what you find out.

Bestregards, David

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Two players! $M = (m_{ij})$ an $r \times s$ payoff matrix with $m_{ij} \in \mathbb{R}^d$.

$$\mathcal{P} = \left\{ p = (p_1, \dots, p_r) \mid p_i \geq 0, \sum_i p_i = 1 \right\}$$

the mixed actions of player I,

$$Q = \left\{ q = (q_1, \ldots, q_s) \mid q_j \geq 0, \sum_j q_j = 1 \right\}$$

the *mixed actions* of player II. A *strategy f* in the repeated game of player I is a sequence $f = (f_k; k \ge 1)$ with $f_k \in \mathcal{P}$. A *strategy g* for player II is defined similarly.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Universal portfolios

Two strategies define a sequence of payoffs z_k , k = 1, 2, ..., i.e.: In the k-th game i and j are chosen according to f_k and g_k . The payment to player I is then $m_{ij} \in \mathbb{R}^d$. f_k and g_k may depend on earlier outcomes.

Blackwell's question:

Can one control

$$\overline{Z}_n = \frac{1}{n} \sum_{k=1}^n z_k,$$

where z_k denotes the payoff of the k-th game, with a strategy f such that \overline{z}_n approaches a given set \mathcal{S} independently of what player II does?

Classical Blackwell Prediction

Prediction for $d \ge 3$

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \geq 3$

Jniversal portfolios

Approachability of a set in \mathbb{R}^d :

 $\mathcal{S} \subset \mathbb{R}^d$ is approachable for player I if there exists a strategy f^* for which $d(\overline{z}_n, \mathcal{S}) \to 0$ with probability 1.

For
$$p \in \mathcal{P}$$
 let $\mathcal{R}(p) = \operatorname{conv}\left(\sum_{i=1}^r p_i \, m_{ij}, \ j=1,\ldots,s\right)$.

Theorem 2 (Blackwell's Approachability Result (1956))

S a closed convex subset of \mathbb{R}^d . For every $z \notin S$ let y denote the closest point in S to z.

(C1) For every $z \notin S$ there exists a $p(z) \in \mathcal{P}$ such that the hyperplane through y which is perpendicular to the line segment \overline{zy} contains $\mathcal{R}(p)$.

If (C1) holds, then S is approachable.

Classical Blackwell

Prediction for d > 3

Blackwell's

Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Jniversal oortfolios

Octoronoco

Proof

Let $d_n = d(\mu_n, S)$. Let y_n denote the closest point in S to μ_n . Then

$$\begin{aligned} d_{n+1}^2 &\leq \|\mu_{n+1} - y_n\|^2 \\ &= \left\|\frac{n}{n+1} (\mu_n - y_n) + \frac{1}{n+1} (z_{n+1} - y_n)\right\|^2 \\ &= \left(\frac{n}{n+1}\right)^2 d_n^2 + \frac{K^2}{(n+1)^2} + \frac{2n}{(n+1)^2} \langle \mu_n - y_n, z_{n+1} - y_n \rangle. \end{aligned}$$

Taking conditional expectations and using orthogonality by (C1) leads to

$$E\left(d_{n+1}^{2} \mid past(n)\right) \leq \left(\frac{n}{n+1}\right)^{2} d_{n}^{2} + \frac{K^{2}}{(n+1)^{2}}.$$

Then further as above.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Blackwell's

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Universal

Examples:

1) Special case:

Let $m_{ij} \in \mathbb{R}$. Then there exists a $v \in \mathbb{R}$ such that

$$v = \min_{q \in \mathcal{Q}} \max_{p \in \mathcal{P}} p' Mq = \max_{p \in \mathcal{P}} \min_{q \in \mathcal{Q}} p' Mq.$$

(Minimax Theorem of von Neumann)

Then one can find a strategy f^* such that in a sequence of independent games $\overline{z}_n \to \mathcal{S}$, where $\mathcal{S} = [v, \infty)$.

This strategy is given by $f^* = (p^*, p^*, ...)$, where p^* is such that

$$\sum_{i=1}^r p_i^{*'} m_{ij} \ge v \quad \text{ for } j = 1, \dots, s$$

holds.

Classical Blackwell Prodiction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \geq 3$

Universal portfolios

$$M = \begin{pmatrix} (0,1) & (1,0) \\ (0,0) & (1,1) \end{pmatrix}.$$

Blackwell's Interpretation: Nature chooses the column, corresponding to 0 or 1. The statistician has to predict. He chooses the row. The first component states what nature chooses, the second component whether the statistician is correct or not.

$$(1,1) \overline{z}_n = (\overline{x}_n, \overline{\gamma}_n)$$

 $\overline{x}_n = \frac{1}{n} \sum_{k=1}^n x_k$, the relative frequency of "1" in the sequence $x_1, x_2, x_3, \ldots, x_n$,

 $\gamma_k \ = \ \mathbbm{1}_{\{y_k = x_k\}}\,, \ \ ext{the success indicator,}$

$$\overline{\gamma}_n = \frac{1}{n} \sum_{k=1}^n \gamma_k$$
, the relative frequency of correct prediction.

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Jniversal ortfolios

A transformation of the prediction square

A basis for generalisations to more than two categories.

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \geq 3$

Iniversal ortfolios

The corresponding matrix

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$

Jniversal oortfolios

Prediction for d = 3

A natural prediction space for three categories. Instead of considering $(\overline{x_n}, \overline{\gamma}_n)$ as pair, we use $v_n = \overline{x}_n + \overline{\gamma}_n \mathbb{1}_3$ with $\mathbb{1}_3 = (1, 1, 1)$.

$$V_3 = \{x + \gamma \mathbb{1}_3 \mid x \in \Sigma_2, \ \gamma \in [0, 1]\}$$

Note $V_3 \subset \mathbb{R}^3$.

Classical Blackwell

Prediction for $d \geq 3$

Blackwell's
Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$ (again)

Universal portfolios

 $\mathcal{S} = \left\{ x + \gamma \mathbb{1}_3 \in V \mid \gamma \geq \max \left\{ x^{(0)}, x^{(1)}, x^{(2)} \right\} \right\}$ Does $v_n \to \mathcal{S}$?

portfolios

_ .

Blackwell Prediction

Prediction for $d \ge 3$

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \ge 3$ (again)

. 10101011000

The relation between V_3 and W_3

$$\begin{aligned} W_3 &= \{(x,\gamma)|x\in \Sigma_2,\ \gamma\in [0,1]\}\subset \mathbb{R}^4\\ V_3 &= \{(x+\gamma\cdot \mathbb{1}_3)|x\in \Sigma_2,\ \gamma\in [0,1]\}\subset \mathbb{R}^3 \end{aligned}$$

 W_3 and V_3 are isometric isomorph, i.e. there exists a $\varphi:W_3\to V_3$ bijective such that for $z,\tilde{z}\in W_3$ it holds:

$$d_1(z,\tilde{z}) = d(\varphi(z),\varphi(\tilde{z})), \quad \text{where } d_1^2(z,\tilde{z}) = \sum_{i=1}^3 (z_i - \tilde{z}_i)^2 + 3(z_4 - \tilde{z}_4)^2.$$

Since $\varphi(\mathscr{S}) = \mathcal{S}$, convergence of $(\overline{x}_n, \overline{\gamma}_n) \to \mathscr{S}$ is equivalent to that of $v_n \to \mathcal{S}$, where $v_n = \overline{x}_n + \overline{\gamma}_n \cdot \mathbb{1}_3$.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$ (again)

Jniversal cortfolios

The geometric structure of V_3

We cut V_3 from each of its upper vertices down to the two lower vertices. This yields 8 pieces of 4 different types. S is the piece on the top.

The cutting planes have $s = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ as joint point and are perpendicular to each other.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \geq 3$ (again)

Universal cortfolios

How does the algorithm randomize in the different pieces?

We put $P(Y_{n+1} = j) = p^{(j)}(v_n)$ for j = 0, 1, 2 and define $p(v_n) := (p^{(0)}(v_n), p^{(1)}(v_n), p^{(2)}(v_n))$ as follows:

Type 1: $v_n \in$

Game Theory

Prediction for d > 3(again)

Type 2: $v_n \in$

Classical Blackwell Prediction

Prediction for $d \geq 3$

Blackwell's
Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$ (again)

Universal portfolios

nearest point in S for v_n (1,0,0)(0, 1, 0)

Type 3: $v_n \in$

for $d \geq 3$

Game Theory

Prediction for $d \ge 3$ (again)

Type 3: $v_n \in$

$$p(v_n) = (1,0,0)$$

Game Theory

Prediction for $d \ge 3$ (again)

The corresponding matrix

Let

$$M = \begin{pmatrix} (2,1,1) & (0,1,0) & (0,0,1) \\ (1,0,0) & (1,2,1) & (0,0,1) \\ (1,0,0) & (0,1,0) & (1,1,2) \end{pmatrix}$$

Prediction for three categories with payments e_i , i = 0, 1, 2 (the unit vectors) or $e_i + \mathbb{1}_3$, i = 0, 1, 2.

$$V_{3} = \text{conv} \{e_{i}, e_{i} + \mathbb{1}_{3}; i = 0, 1, 2\}.$$

$$S = \left\{ x + \gamma \mathbb{1}_{3} \in V_{3} \middle| \gamma \ge \max \left\{ x^{(0)}, x^{(1)}, x^{(2)} \right\} \right\}$$

$$\overline{z}_{n} = \overline{x}_{n} + \overline{\gamma}_{n} \mathbb{1}_{3}$$

 $d(\overline{z}_n, S) \to 0$ if (C1) is satisfied in $V_3 \setminus S$.

Classical Blackwell Prediction

Prediction for d > 3

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$ (again)

Universal portfolios

The result for $d \in \mathbb{N}$

Let

$$\begin{split} \Sigma_{d-1} &= \left\{ \left(q^{(0)}, \dots, q^{(d-1)} \right) \mid q^{(i)} \geq 0, \ \sum_{i=1}^{d-1} q^{(i)} = 1 \right\} \\ V_d &= \Sigma_{d-1} + [0, 1] \cdot \mathbb{1}_d \\ \mathcal{S}_d &= \left\{ x + \gamma \mathbb{1}_d \in V_d \mid \gamma \geq \max \left\{ x^{(0)}, \dots, x^{(d-1)} \right\} \right\} \\ V_n &= \overline{x}_n + \overline{\gamma}_n \mathbb{1}_d \end{split}$$

Theorem 3

Let $d \geq 2$. There exists a generalized Blackwell algorithm such that for every sequence x_1, x_2, x_3, \ldots with values in $D = \{0, 1, 2, \ldots, d-1\}$, it holds that $v_n \to \mathcal{S}$ as $n \to \infty$ almost surely.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$ (again)

Universal portfolios

We apply Theorem 2 to

$$M = \begin{pmatrix} (2,1,\ldots,1) & \ldots & (0,0,\ldots,1) \\ & \ddots & \\ & & (1,0,\ldots,0) & \ldots & (1,1,\ldots,2) \end{pmatrix}.$$

How to randomize?

Let e_i , $i=0,\ldots,d-1$ denote the standard unit vectors and $\mathbb{1}_d=(1,\ldots,1)$. Let E_i denote the affine spaces

$$E_i = A(e_0, \dots, e_{i-1}, e_i + \mathbb{1}_d, e_{i+1}, \dots, e_{d-1}), i = 0, 1, \dots, d-1.$$

They have $n_i = \frac{2}{d} \mathbb{1}_d - e_i$, i = 0, 1, ..., d - 1 as normal vectors and intersect all in $s = (\frac{2}{d}, ..., \frac{2}{d})$.

The E_i are pairwise perpendicular to each other and devide V_d in 2^d pieces. \overline{V}_n lies in one of these pieces.

Then we have

$$\mathcal{S}_{\textit{d}} = \{z_{\gamma} = \textit{x} + \gamma \mathbb{1}_{\textit{d}} \in \textit{V}_{\textit{d}} \mid \langle z_{\gamma} - \textit{n}_{\textit{i}}, \textit{n}_{\textit{i}} \rangle \geq 0, \; \forall \textit{i} \in \textit{D}\}$$

with
$$D = \{0, 1, 2, \dots, d - 1\}.$$

Classical
Blackwell
Prodiction

Prediction for d > 3

Blackwell's Minimax Theorem in

Prediction for $d \ge 3$ (again)

Universal portfolios

The definition of $p(v_n) \in \Sigma_{d-1}$

a) Let $v_n \not\in \mathcal{S}_d$. Let $\{i_0,\ldots,i_j\}$ be a subset of $\{1,\ldots,n\}$ such that:

$$\langle \overline{v}_n - n_l, n_l \rangle < 0$$
 for $l = i_0, \dots, i_j$ with some $0 < j \le d-1$ and

 $\langle \overline{v}_n - n_l, n_l \rangle \geq 0$ for all other *l*.

Let
$$A_1=A\left(rac{2}{d}\mathbb{1}_d,\overline{v}_n,e_{i_{j+1}},\ldots,e_{i_{d-1}}
ight)$$
 and $A_2=A(e_{i_0},e_{i_1},\ldots,e_{i_j}).$

Let $A_1 \cap A_2 = \{p_0\}$. We put $p(v_n) = p_0$.

b) If $\overline{v}_n \in \partial \mathcal{S}_d$, let $\nu = \#\{i \in D \mid \overline{v}_n \in E_i\}$.

Then put
$$p^{(i)}(\overline{v}_n) := \begin{cases} \frac{1}{\nu} & \text{if } \overline{v}_n \in E_i \\ 0 & \text{if } \overline{v}_n \notin E_i \end{cases}$$
 for $i = 0, \dots, d-1$.

c) If $\overline{v}_n \in \mathcal{S}_d \setminus \partial \mathcal{S}_d$, then put $p^{(i)}(\overline{v}_n) = \frac{1}{d}$ for $i = 0, \dots, d-1$.

With this definition, condition (C1) of Theorem 2 ist satisfied.

Classical Blackwell Prediction

Prediction for d > 3

Minimax
Theorem in

Prediction for $d \ge 3$ (again)

Universal portfolios

Why does (C1) hold? (for d = 3)

Consider **Type 2**: $v \in$

Construct \tilde{v} as $\{\tilde{v}\} = A' \cap A''$ with $A' = A(v, v_{\text{proj}}), A'' = A(p(v), e_3)$. Then $\tilde{v}_{\text{proj}} = v_{\text{proj}}$ and $v - v_{\text{proj}} \perp A(\mathcal{R}(p(v))) \Leftrightarrow \tilde{v} - \tilde{v}_{\text{proj}} \perp A(\mathcal{R}(p(v)))$.

Game Theory

Prediction for d > 3(again)

Further we have: $\tilde{v} - \tilde{v}_{\text{proj}} \perp e_3 - \tilde{v}_{\text{proj}}$

$$ilde{v} - ilde{v}_{\mathsf{proj}} \perp e_i +
ho^{(i)} \mathbb{1}_3 - ilde{v}_{\mathsf{proj}}, \quad i = 1, 2$$

Thus
$$A(\mathcal{R}(p(v))) = \tilde{v}_{\text{proj}} + \text{span} \left(e_3 - \tilde{v}_{\text{proj}}, e_i + \mathbb{1}_3 p^{(i)} - \tilde{v}_{\text{proj}}, i = 1, 2\right)$$

and $A(\mathcal{R}(p(v))) \perp \tilde{v} - \tilde{v}_{\text{proj}}$

Classical Blackwell Prediction

Prediction for $d \geq 3$

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \geq 3$ (again)

Jniversal cortfolios

Universal portfolios (due to T. Cover)

Let $\mathbf{x} = (x_1, \dots, x_m) \ge 0$ be a market vector for one investment period. x_i is the number of units returned from an investment of 1 unit in the *i*-th stock.

$$\mathbf{b} = (b_1, \dots, b_m) \ge 0, \sum_{i=1}^m b_i = 1$$
, a portfolio vector.

 $S={f b}'{f x}$ is the factor of capital increase using portfolio ${f b}$ for one period.

After *n* investment periods (starting with $S_0 = 1$) the capital is

$$S_n = \prod_{j=1}^n \mathbf{b}' \mathbf{x}_j = \exp\left(\int \ln(\mathbf{b}' \mathbf{x}) dp_n(\mathbf{x})\right)$$

with
$$p_n := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\mathbf{x}_i = \mathbf{x}\}}$$
 where $\mathbf{x} \in \{a_1, \dots, a_M\} \subset \mathbb{R}^m$.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$

Universal portfolios

Let $W(\mathbf{b}, p) := \int \ln(\mathbf{b}'\mathbf{x}) dp(\mathbf{x})$ and $W^*(p) := \sup_{\mathbf{b}} W(\mathbf{b}, p)$ for a probability measure p.

A sequential choice of portfolios \mathbf{b}_1 , $\mathbf{b}_2(\mathbf{x}_1)$, ..., $\mathbf{b}_n(\mathbf{x}_1, \dots, \mathbf{x}_{n-1})$ results in capital

$$S_n = \prod_{k=1}^n \mathbf{b}'_k(\mathbf{x}_1, \dots, \mathbf{x}_{k-1}) \mathbf{x}_k$$

Let $W_n = \frac{1}{n} \ln S_n = \frac{1}{n} \sum_{k=1}^n \ln \mathbf{b}_k' \mathbf{x}_k$. W_n is the cumulative log-return using portfolio choice $\mathbf{b}_1, \mathbf{b}_2(\mathbf{x}_1), \ldots$ We seek to drive W_n above $W^*(p_n)$ by appropriate choices of \mathbf{b}_k .

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction or $d \geq 3$

Universal portfolios

Invoke Blackwell's approachability result.

Let
$$V = \{(p, W) \mid p \in \sum_{M-1}, |W| \le L\} \subset \mathbb{R}^{M+1}$$
 and $S = \{(p, W) \mid W \ge W^*(p), p \in \sum_{M-1}\}.$

Now consider the situation at time n.

Let $\mu_n=(p_n,W_n)\in\mathbb{R}^{M+1}$ denote the current empirical probability p_n and log-return W_n . Let \mathbf{t}_n denote the closest point in the convex set \mathcal{S} to μ_n . Denote $\mathbf{t}_n=(\widehat{p}_n,\widehat{W}_n)$. By construction we have $\widehat{W}_n=W^*(\widehat{p}_n)$. There is also the portfolio $\mathbf{b}^*(\widehat{p}_n)=\arg\max_{\mathbf{b}}W(\mathbf{b},\widehat{p}_n)$.

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$ (again)

Universal portfolios

 $\mathbf{b}^*(\widehat{p}_n)$ generates the supporting hyperplane at \mathbf{t}_n :

$$\mathcal{H}_n = \Big\{(\rho, W) \mid \rho \in \Sigma_{M-1}, W = \int ln(oldsymbol{b^*}' oldsymbol{x}) d\rho(oldsymbol{x})\Big\}.$$

We now set $\mathbf{b}_{n+1} = \mathbf{b}^*(\widehat{p}_n)$.

Define
$$z_{n+1} = (\mathbb{1}(\mathbf{x}_{n+1}), \ln \mathbf{b}'_{n+1} \mathbf{x}_{n+1})$$

and observe that
$$\mu_{n+1} = \frac{1}{n+1} \sum_{k=1}^{n+1} z_k$$
.

Then $d(\mu_n, S) \rightarrow 0$ and as a consequence

$$W_n - W(\mathbf{b}^*(p_n)) \to 0 \text{ as } n \to \infty.$$

Classical Blackwell Prediction

Prediction for $d \geq 3$

Minimax
Theorem in
Game Theory

Prediction for $d \ge 3$

Universal portfolios

What is harder to predict the US-Dollar, the DAX, or the weather?

Classical Blackwell

Prediction for d > 3

Blackwell's
Minimax
Theorem in
Game Theory

Prediction for $d \geq 3$

Universal portfolios

References

- Blackwell, D. (1956): An Analog of the Minimax Theorem for Vector Payoffs. Pacific Journal of Mathematics, 6, 1–8.
- Cover,T. M.(1991): Universal Portfolios. Mathematical Finance, 1, 1–29.
- Lerche, H.R., Sakar, J. (1994): The Blackwell Prediction Algorithm for infinite 0-1 sequences and a generalization. In *Statistical Decision Theory and Related Topies V*, Ed.: S.S. Gupta, J.O. Berger, Springer Verlag, 503–511.
- Riedel, F. (2008): Blackwell's Theorem with Weighted Averages.
 Preprint.
- Sandvoss, R. (1994): Blackwell Vorhersageverfahren zur Komplexität von Finanzdaten. Diplomarbeit Universität Freiburg.

Classical Blackwell Prediction

Prediction for d > 3

Blackwell's Minimax Theorem in Game Theory

Prediction for $d \geq 3$

Universal portfolios

END

