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1. Introduction
The time may be discrete or continuous.
We consider a time-homogeneous Markov process Z = (Zt)t≥0 taking values
in X

∪
e, where (X,B) is a measurable space and e is an absorbing state.

1) ρ(z) ≥ 0 — killing intensity.
2) g(z) — payoff function, g(e) = 0.
3) c(z) — cost of observation, c(e) = 0.

V (z, τ ) = Ez
[
g(Zτ )−

∫ τ
0 c(Zs)ds

]
, V (z) = sup

τ
V(z, τ ).

In discrete time we have
∑τ−1

0 instead of integral.
We suppose that the expectation is well–defined for all τ .
If ρ(z) = constant then it is equivalent to the problem with discounting
coefficient β where β = ρ in continuous time or β = 1− ρ in discrete time.
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C — subset of X ,
τC = inf{t : Zt /∈ C}.
gC(z) = V (z, τC) = Ez

[
g(ZτC)−

∫ τC
0 c(Zs)ds

]
, gC(z) = g(z) if z /∈ C.

Lemma 1. If gC(z) > g(z) for all z ∈ C then the problem with payoff function
gC(z) has the same value function as the problem with payoff function g(z).

Proof. It follows from gC(z) ≥ g(z) that VC(z) ≥ V (z). From the other side
for any τ we have VC(z, τ ) = V (z, τ ′) where τ ′ = inf{t : t ≥ τ, Zt /∈ C}.
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2. Discrete time
.
P — transition operator, Pf (z) = Ezf (Z1).
T f (z) = −c(z) + Pf (z) — revaluation operator
Theorem 1. a) The function V (z) is a minimal solution of the optimality

equation (Bellman equation)

V (z) = max[g(z), T V (z)]. (1)

b) If Pz[τ
∗ < ∞] = 1 for all z ∈ X, where τ∗ = inf{n ≥ 0 : Zn ∈ D∗},

D∗ = {z : V (z) = g(z)}, then the stopping time τ∗ is optimal one and
τ∗ ≤ τ ′ Pz-a.s. for any z and any optimal stopping time τ ′.

c) For the sequence Ṽ (0)(z) = g(z), Ṽ (k+1)(z) = max[g(z), T Ṽ (k)(z)] the
following relation holds Ṽ (k) ↑ V.

D∗ = {z : V (z) = g(z)} - stopping set

C∗ = X \D∗ = {z : V (z) > g(z)} — continuation set
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c) For the sequence Ṽ (0)(z) = g(z), Ṽ (k+1)(z) = max[g(z), T Ṽ (k)(z)] the
following relation holds Ṽ (k) ↑ V.

It is said often that statement c) offers a constructive method for finding the
value function V (z) (see, for example, [2], p. 19).
Nevertheless, if Pz[τ

∗ > a] > 0 for some z ∈ X and any a < ∞ then
Ṽk(z) ≤ Ṽk+1(z) < V (z) for this z and all k.
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Example 1. Random walk on entire points of interval [0, 32]. Absorbtion at 0
and 32. Symmetric Bernoully at all other points. c(z) = 0. g(2) = 11, g(8) =
4, g(15) = 8, g(22) = 5, g(30) = 14.
The function V (z) is depicted by red.
Ṽ (k+1)(z) = max[g(z), (Ṽ (k)(z − 1) + Ṽ (k)(z + 1))/2].
Function Ṽ (53)(x)− green at the points where it does not coincide with g(x).
The function Ṽ (350)(x) is depicted by blue. Here Ṽ (350)(16) = 11, 77, and
V (16) = 12, 5. So, even after 350 iteration the approximation error is 5, 84%.                       0      1     2                     5                      8                                               15                                                     22                                                           30            32  
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Condition A. Functions g(z) and c(z) are bounded and there exists n0 > 0
such that Pz{Zn0 = e} ≥ 1− β > 0 for any z ∈ X .

Lemma 2. If Condition A is fulfilled and C = {z : Tg(z) > g(z)} then
gC(z) > g(z) for all z ∈ C and the problem with payoff function gC(z) has
the same value function as the initial problem with payoff function g(z).

Sonin’s State Elimination Algorithm. Finite state space

Sequentially we get the nondecreasing sequence of sets Ck which converges
to the continuation set and the corresponding sequence of modified reward
functions gk(z) which converges nondecreasingly to the value function of the
initial problem.
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Example 2. The same optimal stopping problem as in the Example 1.                       0      1     2                     5                      8                                               15                                                     22                                                           30            32  
The function g1(z) is depicted by yellow at the points where it does not
coincide with g(x). The function g2(x) is depicted respectively by green, the
function g3(x) is depicted respectively by blue, the function g4(x) is depicted
respectively by black, the function g5(x) is depicted respectively by red. So,
after five iteration we got the value function and the stopping set.
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3. One-dimensional diffusion
The general theory of the optimal stopping and methods of constructing the
value function can be found, for example, in Peskir, Shiryaev (2006).
One-dimensional diffusion Dayanik, Karatzas (2003), Salminen (1985).

Time-homogeneous Markov process Z = (Zt)t≥0 taking values in X
∪

e,
where e is an absorbing state and X = (a, b) is a measurable space and.
1) ρ(z) ≥ 0 — killing intensity,
2) g(z) — payoff function, g(e) = 0,
3) c(z) — cost of observation, c(e) = 0,
4) σ(z) ≥ 0 — diffusion coefficient,
5) m(z) — drift coefficient,.
6) a = z0 < z1 < . . . < zk < zk+1 = b,
7) ρ(z), c(z),m(z), σ(z), g(z), g′(z), g′′(z) continuous on (zi, zi+1), i = 0, . . . k,
8) 0 ≤ αi < 1 — reflection with probability αi at point zi, i = 1, . . . k.
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V (z, τ ) = Ez
[
g(Zτ )−

∫ τ
0 c(Zs)ds

]
, V (z) = sup

τ
V(z, τ ).

a < c < d < b,
τ(c,d) = inf{t : Zt /∈ (c, d)}.

g(c,d)(z) = V (z, τ(c,d)) = Ez

[
g(Zτ(c,d))−

∫ τ(c,d)
0 c(Zs)ds

]
,

g(c,d)(z) = g(z) if z /∈ (c, d).

Lg(c,d)(z) :=
σ2(z)
2

d2

dz2
g(c,d)(z) +m(z) ddzg(c,d)(z)− ρ(z)g(c,d)(z)− c(z) = 0

for z ∈ (c, d), g(c,d)(c) = g(c), g(c,d)(d) = g(d),
if zi ∈ (c, d) then (1 + αi)g

′
+(c,d)

(zi)− (1− αi)g
′
−(c,d)

(zi) = 0.

9) Lg(z) does not change sign on (zi, zi+1), i = 0, . . . k.
10) g(z) is upper semi-continuous, i. e. g(z) ≥ lim supz→zi g(z), i = 1, . . . , k.
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Lemma 3. If g(zi) > limz↓zi g(z) then there exists ε ∈ (zi, zi+1) such that
g(zi,ε)(z) > g(z) for z ∈ (zi, ε). The same situation holds for the points where
g(zi) > limz↑a g(z).

Lemma 4. If Lg(z) > 0 for z ∈ (zi, zi+1) then g(zi,zi+1)(z) > g(z) for
z ∈ (zi, zi+1), i = 1, . . . , k − 1.

Lemma 5. If (1+αi)g′+(zi)−(1−αi)g
′
−(zi) > 0 then there exist ε ∈ (zi−1, zi)

and δ ∈ (zi, zi+1) such that g(ε,δ)(z) > g(z) for z ∈ (ε, δ) and g′
+(ε,δ)

(ε) >

g′−(ε,δ)
(ε), g′

+(ε,δ)
(δ) > g′−(ε,δ)

(z).

Lemma 6. If g(z) is continuous, Lg(z) ≤ 0 for all points of continuity and
(1 + αi)g

′
+(zi)− (1− αi)g

′
−(zi) ≤ 0, i = 1, . . . , k, then V (z) = g(z).
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                    g(-ε1,δ1)(z)                            g(z) 

                         g(-ε,δ)(z)            

                    

                g(z) 

 

         -ε1        -ε        0          δ             δ1   

Remark 3. One can say that an interval (c, d) in the problem with a smooth
g(z) is a smooth fitting interval if the function g(c,d)(z) has continuous derivative
at points c and d. It can happen that such interval has no relation to the set
C∗ and one needs to use a verification theorem. In the proposed procedure we
do not need to use a verification theorem.
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4. Some examples
11 examples in Dayanik, Karatzas (2003).

Example 3. Geometric Brownian motion Zt on [0;∞] with parameters (m,σ),
killing intensity ρ and g(z) = max[l, z] (Guo and Shepp (2001)).

Lf (z) :=
(
σ2z2/2

)
f ′′(z) +mzf ′(z)− ρf (z).

Let κ+ > 0 and κ− < 0 be the solutions of σ2κ2 −
(
σ2 − 2m

)
κ− 2λ = 0.

Then g(c,d)(z) = C1z
κ++C2z

κ−, where C1, C2 are chosen from the conditions
g(c,d)(c) = g(c), g(c,d)(d) = g(d).
If m > ρ then g(c,d)(z) → +∞ and consequently V (z) = +∞.
The case m = ρ will be considered in Example 4.
Let now m < ρ.
Since Lg(z) = −(ρ−m)z < 0 for z > l and , Lg(z) = −ρ < 0 for 0 < z < l
the only suspicious point is the point z = 1.
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Let 0 < c < l < d. If l − c and d − l are small then g(c,d)(z) > g(z) for
z ∈ (c, d) and g′

+(c,d)
(c) > g′−(c,d)

(c) = 0, 1 = g′
+(c,d)

(d) > g′−(c,d)
(d) = 0.

We can decrease c and increase d till the vakues c∗, d∗ for which
g′
+(c∗,d∗)(c

∗) = g′−(c∗,d∗)(c
∗) = 0, 1 = g′

+(c∗,d∗)(d
∗) = g′−(c∗,d∗)(d

∗) = 0.
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Example 4. Geometric Brownian motion Zt on (0;∞] with parameters (m,σ),
killing intensity m and g(z) = (max[l, z]−K)+ (Guo and Shepp (2001)).

Lf (z) :=
(
σ2z2/2

)
f ′′(z) +mzf ′(z)−mf (z).

Then g(c,d)(z) = C1z+C2z
κ, where κ = 2m/σ2 and C1, C2 are chosen from

the conditions g(c,d)(c) = g(c), g(c,d)(d) = g(d).
Since Lg(z) = −m(l − K) < 0 for 0 < z < l and , Lg(z) = mK for
z > l we have that if c = l < d then g(c,d)(z) > g(z) for z ∈ (c, d) and
g′
+(c,d)

(c) > g′−(c,d)
(c) = 0, 1 = g′

+(c,d)
(d) > g′−(c,d)

(d) = 0.

We can decrease c and increase d till the values c∗, d∗ = ∞ for which
g′
+(c∗,d∗)(c

∗) = g′−(c∗,d∗)(c
∗) = 0.
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Example 5. Brownian motion Zt with parameters (m, 1), killing intensity ρ
and g(z) = 1 for z ≤ 0 and g(z) = 2 for g(z) = 1 (Salminen (1985)).

Lf (z) := f ′′(z) +mf ′(z)− ρf (z).
Let γ+ > 0 and γ− < 0 be the solutions of γ2 −mγ − ρ = 0.
Then g(c,d)(z) = C1e

zγ++C2e
zγ−, where C1, C2 are chosen from the conditions

g(c,d)(c) = g(c), g(c,d)(d) = g(d).
Lg(z) = −m < 0 for −ρ < 0 and Lg(z) = −2ρ for z > 0. Chose c < 0, |c|
small, and d ↓ 0. Then g(c,0+)(z) > g(z) for z ∈ (c, 0) and g′

+(c,0+)
(c) >

g′−(c,0+)
(c) = 0,

We can decrease c till the value c∗ for which
g′
+(c∗,0+)(c

∗) = g′−(c∗,0+)(c
∗) = 0.
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Example 6. Geometric Brownian motion Zt on [1;∞] with parameters (−m,σ),
killing intensity ρ, reflection at the point 1 and with functional Ez [xτ ].
This example corresponds to the Russian option (see [2], Section 26).

Lf (z) :=
(
σ2z2/2

)
f ′′(z)−mzg′′(z)− ρf (z).

Since in this case g(z) = z and Lg(z) = −(m + ρ)z < 0, the only suspicious
point is the point z = 1.

Let κ+ > 0 and κ− < 0 be the solutions of σ2κ2 −
(
σ2 + 2m

)
κ − 2λ = 0.

The reflection corresponds to the condition g′
[1,a)

(1) = 0 and

g[1,a)(z) :=
g(a) (κ+z

κ− − κ−zκ+)
κ+aκ− − κ−aκ+

for z ∈ [1, a) .

If a− 1 is small then g′
[1,a)

(a) < g′(a) and g[1,a)(z) > g(z) for z ∈ [1, a).

The optimal value a∗ can be found as earlier from the condition
a∗ = {inf a : g′

[1,a)
(a) ≥ g′(a) ≡ 1}.
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      g[1,1+ε)(z) 

 

             g(z) 

   1                1+ε  
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