About new approach to the solution of the optimal stopping problem

Ernst Presman

Central Economics ξ^{3} Mathematics Institute of Russian Academy of Science

International Conference "Stochastic Optimal Stopping"

September 12-16, 2010, Petrozavodsk, Russia .

1. Introduction

The time may be discrete or continuous.
We consider a time-homogeneous Markov process $Z=\left(Z_{t}\right)_{t \geq 0}$ taking values in $X \bigcup e$, where (X, \mathcal{B}) is a measurable space and e is an absorbing state.

1) $\rho(z) \geq 0$ - killing intensity.
2) $g(z)$ - payoff function, $g(e)=0$.
3) $c(z)$ - cost of observation, $c(e)=0$.

$$
V(z, \tau)=E_{z}\left[g\left(Z_{\tau}\right)-\int_{0}^{\tau} c\left(Z_{s}\right) d s\right], \quad V(z)=\sup _{\tau} V(z, \tau) .
$$

In discrete time we have $\sum_{0}^{\tau-1}$ instead of integral. We suppose that the expectation is well-defined for all τ.
If $\rho(z)=$ constant then it is equivalent to the problem with discounting coefficient β where $\beta=\rho$ in continuous time or $\beta=1-\rho$ in discrete time.
$C-$ subset of X,
$\tau_{C}=\inf \left\{t: Z_{t} \notin C\right\}$.
$g_{C}(z)=V\left(z, \tau_{C}\right)=E_{z}\left[g\left(Z_{\tau_{C}}\right)-\int_{0}^{\tau_{C}} c\left(Z_{s}\right) d s\right], \quad g_{C}(z)=g(z)$ if $z \notin C$.
Lemma 1. If $g_{C}(z)>g(z)$ for all $z \in C$ then the problem with payoff function $g_{C}(z)$ has the same value function as the problem with payoff function $g(z)$.

Proof. It follows from $g_{C}(z) \geq g(z)$ that $V_{C}(z) \geq V(z)$. From the other side for any τ we have $V_{C}(z, \tau)=V\left(z, \tau^{\prime}\right)$ where $\tau^{\prime}=\inf \left\{t: t \geq \tau, Z_{t} \notin C\right\}$.

2. Discrete time

\mathcal{P} - transition operator, $\mathcal{P} f(z)=E_{z} f\left(Z_{1}\right)$.
$\mathcal{T} f(z)=-c(z)+\mathcal{P} f(z)-$ revaluation operator
Theorem 1. a) The function $V(z)$ is a minimal solution of the optimality equation (Bellman equation)

$$
\begin{equation*}
V(z)=\max [g(z), \mathcal{T} V(z)] . \tag{1}
\end{equation*}
$$

b) If $\mathbf{P}_{z}\left[\tau^{*}<\infty\right]=1$ for all $z \in X$, where $\tau^{*}=\inf \left\{n \geq 0: Z_{n} \in D^{*}\right\}$, $D^{*}=\{z: V(z)=g(z)\}$, then the stopping time τ^{*} is optimal one and $\tau^{*} \leq \tau^{\prime} \mathbf{P}_{z}$-ass. for any z and any optimal stopping time τ^{\prime}.
c) For the sequence $\tilde{V}^{(0)}(z)=g(z), \tilde{V}^{(k+1)}(z)=\max \left[g(z), \mathcal{T} \tilde{V}^{(k)}(z)\right]$ the following relation holds $\tilde{V}^{(k)} \uparrow V$.
$D^{*}=\{z: V(z)=g(z)\}$ - stopping set
$C^{*}=X \backslash D^{*}=\{z: V(z)>g(z)\}-$ continuation set
c) For the sequence $\tilde{V}^{(0)}(z)=g(z), \tilde{V}^{(k+1)}(z)=\max \left[g(z), \mathcal{T} \tilde{V}^{(k)}(z)\right]$ the following relation holds $\tilde{V}^{(k)} \uparrow V$.

It is said often that statement c) offers a constructive method for finding the value function $V(z)$ (see, for example, [2], p. 19).
Nevertheless, if $P_{z}\left[\tau^{*}>a\right]>0$ for some $z \in X$ and any $a<\infty$ then $\tilde{V}_{k}(z) \leq \tilde{V}_{k+1}(z)<V(z)$ for this z and all k.

Example 1. Random walk on entire points of interval $[0,32]$. Absorbtion at 0 and 32. Symmetric Bernoully at all other points. $c(z)=0 . \quad g(2)=11, g(8)=$ $4, g(15)=8, g(22)=5, g(30)=14$.
The function $V(z)$ is depicted by red.
$\tilde{V}^{(k+1)}(z)=\max \left[g(z),\left(\tilde{V}^{(k)}(z-1)+\tilde{V}^{(k)}(z+1)\right) / 2\right]$.
Function $\tilde{V}^{(53)}(x)-$ green at the points where it does not coincide with $g(x)$. The function $\tilde{V}^{(350)}(x)$ is depicted by blue. Here $\tilde{V}^{(350)}(16)=11,77$, and $V(16)=12,5$. So, even after 350 iteration the approximation error is $5,84 \%$.

Condition A. Functions $g(z)$ and $c(z)$ are bounded and there exists $n_{0}>0$ such that $\mathrm{P}_{z}\left\{Z_{n_{0}}=e\right\} \geq 1-\beta>0$ for any $z \in X$.
Lemma 2. If Condition \mathbf{A} is fulfilled and $C=\{z: \operatorname{Tg}(z)>g(z)\}$ then $g_{C}(z)>g(z)$ for all $z \in C$ and the problem with payoff function $g_{C}(z)$ has the same value function as the initial problem with payoff function $g(z)$.

Sonin's State Elimination Algorithm. Finite state space
Sequentially we get the nondecreasing sequence of sets C_{k} which converges to the continuation set and the corresponding sequence of modified reward functions $g_{k}(z)$ which converges nondecreasingly to the value function of the initial problem.

Example 2. The same optimal stopping problem as in the Example 1.

The function $g_{1}(z)$ is depicted by yellow at the points where it does not coincide with $g(x)$. The function $g_{2}(x)$ is depicted respectively by green, the function $g_{3}(x)$ is depicted respectively by blue, the function $g_{4}(x)$ is depicted respectively by black, the function $g_{5}(x)$ is depicted respectively by red. So, after five iteration we got the value function and the stopping set.

3. One-dimensional diffusion

The general theory of the optimal stopping and methods of constructing the value function can be found, for example, in Peskir, Shiryaev (2006).
One-dimensional diffusion Dayanik, Karatzas (2003), Salminen (1985).
Time-homogeneous Markov process $Z=\left(Z_{t}\right)_{t \geq 0}$ taking values in $X \bigcup e$, where e is an absorbing state and $X=(a, b)$ is a measurable space and.

1) $\rho(z) \geq 0$ - killing intensity,
2) $g(z)$ - payoff function, $g(e)=0$,
3) $c(z)$ - cost of observation, $c(e)=0$,
4) $\sigma(z) \geq 0$ - diffusion coefficient,
5) $m(z)-$ drift coefficient,
6) $a=z_{0}<z_{1}<\ldots<z_{k}<z_{k+1}=b$,
7) $\rho(z), c(z), m(z), \sigma(z), g(z), g^{\prime}(z), g^{\prime \prime}(z)$ continuous on $\left(z_{i}, z_{i+1}\right), i=0, \ldots k$,
8) $0 \leq \alpha_{i}<1$ - reflection with probability α_{i} at point $z_{i}, i=1, \ldots k$.

$$
V(z, \tau)=E_{z}\left[g\left(Z_{\tau}\right)-\int_{0}^{\tau} c\left(Z_{s}\right) d s\right], \quad V(z)=\sup _{\tau} V(z, \tau) .
$$

$$
a<c<d<b
$$

$$
\tau_{(c, d)}=\inf \left\{t: Z_{t} \notin(c, d)\right\}
$$

$$
g_{(c, d)}(z)=V\left(z, \tau_{(c, d)}\right)=E_{z}\left[g\left(Z_{\tau_{(c, d)}}\right)-\int_{0}^{\tau_{(c, d)}} c\left(Z_{s}\right) d s\right],
$$

$$
g_{(c, d)}(z)=g(z) \text { if } z \notin(c, d)
$$

$L g_{(c, d)}(z):=\frac{\sigma^{2}(z)}{2} \frac{d^{2}}{d z^{2}} g_{(c, d)}(z)+m(z) \frac{d}{d z} g_{(c, d)}(z)-\rho(z) g_{(c, d)}(z)-c(z)=0$ for $z \in(c, d), \quad g_{(c, d)}(c)=g(c), g_{(c, d)}(d)=g(d)$,

$$
\text { if } z_{i} \in(c, d) \text { then }\left(1+\alpha_{i}\right) g_{+(c, d)}^{\prime}\left(z_{i}\right)-\left(1-\alpha_{i}\right) g_{-(c, d)}^{\prime}\left(z_{i}\right)=0
$$

9) $\operatorname{Lg}(z)$ does not change sign on $\left(z_{i}, z_{i+1}\right), i=0, \ldots k$.
10) $g(z)$ is upper semi-continuous, i. e. $g(z) \geq \limsup _{z \rightarrow z_{i}} g(z), i=1, \ldots, k$.

Lemma 3. If $g\left(z_{i}\right)>\lim _{z \downarrow z_{i}} g(z)$ then there exists $\varepsilon \in\left(z_{i}, z_{i+1}\right)$ such that $g_{\left(z_{i}, \varepsilon\right)}(z)>g(z)$ for $z \in\left(z_{i}, \varepsilon\right)$. The same situation holds for the points where $g\left(z_{i}\right)>\lim _{z \uparrow a} g(z)$.

Lemma 4. If $L g(z)>0$ for $z \in\left(z_{i}, z_{i+1}\right)$ then $g_{\left(z_{i}, z_{i+1}\right)}(z)>g(z)$ for $z \in\left(z_{i}, z_{i+1}\right), i=1, \ldots, k-1$.

Lemma 5. If $\left(1+\alpha_{i}\right) g_{+}^{\prime}\left(z_{i}\right)-\left(1-\alpha_{i}\right) g_{-}^{\prime}\left(z_{i}\right)>0$ then there exist $\varepsilon \in\left(z_{i-1}, z_{i}\right)$ and $\delta \in\left(z_{i}, z_{i+1}\right)$ such that $g_{(\varepsilon, \delta)}(z)>g(z)$ for $z \in(\varepsilon, \delta)$ and $g_{+(\varepsilon, \delta)}^{\prime}(\varepsilon)>$ $g_{-(\varepsilon, \delta)}^{\prime}(\varepsilon), g_{+(\varepsilon, \delta)}^{\prime}(\delta)>g_{-(\varepsilon, \delta)}^{\prime}(z)$.

Lemma 6. If $g(z)$ is continuous, $L g(z) \leq 0$ for all points of continuity and $\left(1+\alpha_{i}\right) g_{+}^{\prime}\left(z_{i}\right)-\left(1-\alpha_{i}\right) g_{-}^{\prime}\left(z_{i}\right) \leq 0, \quad i=1, \ldots, k$, then $V(z)=g(z)$.

Remark 3. One can say that an interval (c, d) in the problem with a smooth $g(z)$ is a smooth fitting interval if the function $g_{(c, d)}(z)$ has continuous derivative at points c and d. It can happen that such interval has no relation to the set C_{*} and one needs to use a verification theorem. In the proposed procedure we do not need to use a verification theorem.

4. Some examples

11 examples in Dayanik, Karatzas (2003).
Example 3. Geometric Brownian motion Z_{t} on $[0 ; \infty]$ with parameters (m, σ), killing intensity ρ and $g(z)=\max [l, z]$ (Guo and Shepp (2001)).
$L f(z):=\left(\sigma^{2} z^{2} / 2\right) f^{\prime \prime}(z)+m z f^{\prime}(z)-\rho f(z)$.
Let $\kappa_{+}>0$ and $\kappa_{-}<0$ be the solutions of $\sigma^{2} \kappa^{2}-\left(\sigma^{2}-2 m\right) \kappa-2 \lambda=0$. Then $g_{(c, d)}(z)=C_{1} z^{\kappa_{+}+} C_{2} z^{\kappa_{-}}$, where C_{1}, C_{2} are chosen from the conditions $g_{(c, d)}(c)=g(c), g_{(c, d)}(d)=g(d)$.
If $m>\rho$ then $g_{(c, d)}(z) \rightarrow+\infty$ and consequently $V(z)=+\infty$.
The case $m=\rho$ will be considered in Example 4.
Let now $m<\rho$.
Since $L g(z)=-(\rho-m) z<0$ for $z>l$ and,$L g(z)=-\rho<0$ for $0<z<l$ the only suspicious point is the point $z=1$.

Let $0<c<l<d$. If $l-c$ and $d-l$ are small then $g_{(c, d)}(z)>g(z)$ for $z \in(c, d)$ and $g_{+(c, d)}^{\prime}(c)>g_{-(c, d)}^{\prime}(c)=0,1=g_{+(c, d)}^{\prime}(d)>g_{-(c, d)}^{\prime}(d)=0$.
We can decrease c and increase d till the vakues c^{*}, d^{*} for which
$g_{+\left(c^{*}, d^{*}\right)}^{\prime}\left(c^{*}\right)=g_{-\left(c^{*}, d^{*}\right)}^{\prime}\left(c^{*}\right)=0,1=g_{+\left(c^{*}, d^{*}\right)}^{\prime}\left(d^{*}\right)=g_{-\left(c^{*}, d^{*}\right)}^{\prime}\left(d^{*}\right)=0$.

Example 4. Geometric Brownian motion Z_{t} on $(0 ; \infty]$ with parameters (m, σ), killing intensity m and $g(z)=(\max [l, z]-K)^{+}($Guo and Shepp (2001)). $L f(z):=\left(\sigma^{2} z^{2} / 2\right) f^{\prime \prime}(z)+m z f^{\prime}(z)-m f(z)$.
Then $g_{(c, d)}(z)=C_{1} z+C_{2} z^{\kappa}$, where $\kappa=2 m / \sigma^{2}$ and C_{1}, C_{2} are chosen from the conditions $g_{(c, d)}(c)=g(c), g_{(c, d)}(d)=g(d)$.
Since $L g(z)=-m(l-K)<0$ for $0<z<l$ and,$L g(z)=m K$ for $z>l$ we have that if $c=l<d$ then $g_{(c, d)}(z)>g(z)$ for $z \in(c, d)$ and $g_{+(c, d)}^{\prime}(c)>g_{-(c, d)}^{\prime}(c)=0,1=g_{+(c, d)}^{\prime}(d)>g_{-(c, d)}^{\prime}(d)=0$.
We can decrease c and increase d till the values $c^{*}, d^{*}=\infty$ for which $g_{+\left(c^{*}, d^{*}\right)}^{\prime}\left(c^{*}\right)=g_{-\left(c^{*}, d^{*}\right)}^{\prime}\left(c^{*}\right)=0$.

Example 5. Brownian motion Z_{t} with parameters $(m, 1)$, killing intensity ρ and $g(z)=1$ for $z \leq 0$ and $g(z)=2$ for $g(z)=1$ (Salminen (1985)).
$L f(z):=f^{\prime \prime}(z)+m f^{\prime}(z)-\rho f(z)$.
Let $\gamma_{+}>0$ and $\gamma_{-}<0$ be the solutions of $\gamma^{2}-m \gamma-\rho=0$.
Then $g_{(c, d)}(z)=C_{1} e^{z \gamma_{+}}+C_{2} e^{z \gamma_{-}}$, where C_{1}, C_{2} are chosen from the conditions $g_{(c, d)}(c)=g(c), g_{(c, d)}(d)=g(d)$.
$\operatorname{Lg}(z)=-m<0$ for $-\rho<0$ and $\operatorname{Lg}(z)=-2 \rho$ for $z>0$. Chose $c<0,|c|$ small, and $d \downarrow 0$. Then $g_{(c, 0+)}(z)>g(z)$ for $z \in(c, 0)$ and $g_{+(c, 0+)}^{\prime}(c)>$ $g_{-(c, 0+)}^{\prime}(c)=0$,
We can decrease c till the value c^{*} for which
$g_{+\left(c^{*}, 0+\right)}^{\prime}\left(c^{*}\right)=g_{-\left(c^{*}, 0+\right)}^{\prime}\left(c^{*}\right)=0$.

Example 6. Geometric Brownian motion Z_{t} on $[1 ; \infty]$ with parameters $(-m, \sigma)$, killing intensity ρ, reflection at the point 1 and with functional $E_{z}\left[x_{\tau}\right]$.
This example corresponds to the Russian option (see [2], Section 26).
$L f(z):=\left(\sigma^{2} z^{2} / 2\right) f^{\prime \prime}(z)-m z g^{\prime \prime}(z)-\rho f(z)$.
Since in this case $g(z)=z$ and $L g(z)=-(m+\rho) z<0$, the only suspicious point is the point $z=1$.
Let $\kappa_{+}>0$ and $\kappa_{-}<0$ be the solutions of $\sigma^{2} \kappa^{2}-\left(\sigma^{2}+2 m\right) \kappa-2 \lambda=0$.
The reflection corresponds to the condition $g_{[1, a)}^{\prime}(1)=0$ and

$$
g_{[1, a)}(z):=\frac{g(a)\left(\kappa_{+} z^{\kappa_{-}}-\kappa_{-} z^{\kappa_{+}}\right)}{\kappa_{+} a^{\kappa_{-}-}-\kappa_{-} a^{\kappa_{+}}} \text {for } z \in[1, a) .
$$

If $a-1$ is small then $g_{[1, a)}^{\prime}(a)<g^{\prime}(a)$ and $g_{[1, a)}(z)>g(z)$ for $z \in[1, a)$.
The optimal value a^{*} can be found as earlier from the condition $a^{*}=\left\{\inf a: g_{[1, a)}^{\prime}(a) \geq g^{\prime}(a) \equiv 1\right\}$.

Список литературы

[1] S. Dayanik, I. Karatzas, On the optimal stopping problem for one-dimensional diffusions. Stochastic Processes \& Applications, 107, 2003, pp. 173-212.
[2] G. Peskir, A.N. Shiryaev, Optimal stopping and free-boundary problems, Birkhauser, Basel, 2006.
[3] Presman E. L., On Sonin's algorithm for solution of the optimal stopping problem, Proceedings of the Fourth international conference on control problems (January 26-30, 2009). - M.: Institute of Control Sciences, 2009, pp. 300-309.
[4] Presman E. L., Sonin I. M., On one problem of optimal stopping for random variables given on a Markov chain, Theory of Probab. and its Applic., v. 54(3) (2009).
[5] P. Salminen, Optimal stopping of one-dimensional diffusions, Mathematische Nachrichten, 124, 1985, pp. 85-101.
[6] I.M. Sonin, Two simple theorems in the problems of optimal stopping, In: Proc. 8th INFORMS Appl. Prob. Conf., Atlanta, Georgia, 1995, p. 27.
[7] I.M. Sonin, The elimination algorithm for the problem of optimal stopping, Math. Meth. of Oper. Res., 49 (1999), pp.111-123.
[8] I.M. Sonin, The state reduction and related algorithms and their applications to the study of Markov chains, graph theory and the optimal stopping problem, Advances in Math., 145 (1999), pp. 159-188.
[9] I.M. Sonin, Optimal stopping of Markov chains and recursive solution of Poisson and Bellman equations, In: From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift, Springer-Verlag, 2006, pp. 609-621.

