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I will first discuss a retirement problem. The problem has
implications for optimal stopping (pun intended) theory and also
for the downturn of 2008. Joint with Dean Foster, U Penn.

I will then discuss a probability problem which arises in a
misapplication of statistics in which independent processes can be
made to appear correlated. Joint with Abraham Wyner, U Penn



Part 1. How to Retire Early

Abstract. We pose an optimal control problem arising in a
perhaps new model for retirement investing. We seek an
investment strategy in which we invest an amount f (X (t))dt if our
current fortune is X (t) at any time t. Suppose we have a steady
income of dt in each time interval, dt, that we need a fortune of
M dollars to retire, and that we choose to model our fortune
stream, X (t), t ≥ 0, by the Ito process, depending on the choice of
the function, f ,

dX (t) = (1 + f (X (t))dt + f (X (t))dW (t), X (0) = x ,

where W is standard Brownian.



The problem is to choose f = f (x) so that V (x ; f ) = Ex(τ fM), is as
small as possible, where τ fM is the first time, t, that
X (t) = X f (t) = M, starting at X (0) = x , his initial fortune. We
show how to choose an optimal f = f0 and find an explicit formula
for V (x) = V (x ; f0), and show that the choice of f0 is optimal
among all nonanticipative investment strategies, not just among
Markovian ones. We also consider a more general case where the
diffusion coefficient, f , is replaced by Af α. The general case
reveals that the optimal investment strategy as well as the
expected time until retirement are very strongly dependent in
interesting and insightful ways on the particular model used.



The problem is to find a nonanticipating process, f (t), t ≥ 0, so
that if τ fM is the hitting time of M of the Ito process
X (t) = X f (t), t ≥ 0, with X (0) = x , and

dX (t) = (1 + f (t))dt + f (t)dW (t),

then V (x ; f ) = Exτ
f
M is a minimum over all such allowable f . Note

that we are assuming that the state space for this optimal control
problem is the right half line so that we do not allow negative
values of X (t). If X (t) < 0 for some t < τ fM , which is possible if
f (t) is bounded away from zero and also bounded, then there is a
need to define what happensif the investor is in debt; we assume
the game is over in this case and then τ fM =∞ so that with our
definition, we do not even achieve afinite expectation, much less a
minimum. Other definitions, for example, some rule for borrowing
additional capital, are possible to consider, but our model assumes
that we are extremely adverse to being in debt.



We will show that under this assumption, the optimum control, f0,
exists and is unique. Any reasonable person would guess that
f (t) = f (X (t)), i.e., that the optimal f is “Markovian”, i.e., the
optimal strategy depends only on the present fortune. But even if
we guess that f should be Markovian, how do we learn which
particular f is best? There is a nice way, involving a lot of nice
guessing. Once one guesses f the proof that it is optimal is routine
crank-turning, by martingale theory as we will see.
To get lower bounds on V (x) = inff V (x ; f ), one needs to find, in
the usual way, a function, V̄ (x), with V̄ (M) = 0, for which, for
any f , the process, Y (t) = t + V̄ (X f (t)) is a submartingale. If
this is the case, then, we have from optional sampling,
ExY (τM) ≥ Y (0). This gives that for any f and 0 ≤ x ≤ M,
Exτ

f
M = EY (τ fM) ≥ Y (0) = V̄ (x),

and since this holds for any f and 0 ≤ x ≤ M, we get that
V (x) ≥ V̄ (x).



Equality will hold for all x , for the greatest lower bound, V̄ . The
class of all such V̄ ’s is a convex class determined by the Ito
inequalities defining a submartingale, which are that V̄ ≥ 0, and
that for all x and all f ,
E [dY (t)|Ft ] = V̄ ′(x)(1 + f )dt + f 2

2 V̄ ′′(x)dt + dt ≥ 0.
Since this must hold for all choices of f and all choices of
x = X (t) in [0,∞), and since this is quadratic in the real variable
f (if this seems somewhat aggressive with respect to logic, recall
that we are just using this reasoning for guessing the right V̄ ).
For any such V̄ , we have that for any f , V (x ; f ) ≥ V̄ (x), which
gives us the lower bound, V̄ (x) on V (x). Which V̄ ’s satisfy the
above submartingale condition?



Setting the derivative wrt. f equal to zero we see that we must
have for each x , V̄ ′′(x) > 0, and then the minimum occurs at

f = f (x) = − V̄ ′(x)

V̄ ′′(x)
. Putting this f back into the submartingale

inequality we need, cancelling a term, that

1 + V̄ ′(x)− 1
2

(V̄ ′)2(x)

V̄ ′′(x)
≥ 0.

For the best f , we need equality to hold everywhere in the string of
inequalities above so that we would choose V̄ to satisfy the last
inequality with equality throughout. If we set
g(x) = −V̄ ′(x) ≥ 0,
then we seek g to satisfy
g ′(x)( 1

g(x) −
1

g2(x)
) ≡ −1

2 .

Integrating, we have for some integration constant, c ,
1

g(x) + log g(x) = x+c
2 .



Since the left side is of the form 1
y + log y ≥ 1 for all y > 0, it is

tempting to choose c = 2 since this makes the right side greater
than or equal to one for x ≥ 0. N.B. It is our privilege to do this,
since we are just guessing. We have almost arrived at a guess for
the best V̄ , namely we have to solve the last equation for
g(x) = −V̄ ′(x), and then V̄ is determined because we have
V̄ (M) = 0.
A plot of y vs. 1

y + log y is given in Figure 1 which shows that the
inverse function defining g(x) by

1
g(x) + log (g(x)) = 1 + x

2 ,
is not unique since the inverse is not one-one. Which one do we
use, the left side branch or the right side branch to define g(x) for
each x ∈ [0,M]? Recall that we must have g ′(x) = −V̄ ′′(x) > 0,
so we guess to use the left side to determine g(x). There is then
clearly a unique solution, g(x), and we declare this as our guess at
g(x) = −V̄ ′(x).



Using the condition V̂ (M) = 0, we have

V̂ (x) = −
∫M
x V̂ ′(u)du =

∫M
x g(u)du.

We have already set up the proof that this V̂ (x) ≡ V (x). We have
also seen that any optimal choice of f = f0 must satisfy

f (x) = − V̄ ′(x)

V̄ ′′(x)
,

which we can express in terms of the g(x) we have already defined
because we have seen that V ′ can be expressed in terms of g , and
so we get that
f0(x) = g(x)

−g ′(x) = 2 1−g(x)
g(x) .

We note that near x = 0, we have g(x) ∼ 1−
√

x , and so it
follows that f0(x) = 2(g(x)− 1) ∼ 2

√
x . We note that near

x =∞, g(x) ∼ 2
1+x+log x

2
, so that f0(x) ∼ x + log x

2 − 1.



To complete that proof that this f = f0 is optimal, with this choice
of f = f0, and V̄ , the inequalities now hold for every other choice
of f that Y f (t) = t + V̄ f (X f (t)) is a submartingale. It follows
that V (x) ≥ V̄ (x) for all x > 0. Also equality holds for f = f0

given above because in this case the submartingale is a local
martingale. We need to show the equality EY (τM) = Y (0) holds,
where Y is the process, Y (t) = t + V̄ (X f

0 (t)). It is enough to
prove that τM <∞ w.p. 1. The difficulty is that the process,
X (t) = X f0(t) hits zero uncountably many times with positive
probability starting from any 0 ≤ x < M.



How do we know that X cannot take negative values? When
X (t) = 0, then the unit drift moves it to the right, but how do we
know that the term f0(X (t))dW (t) does not cause the process to
reach the negative half-line? Each time the process hits zero,
imagine that f (x) is turned off, so that f (x) = 0 for 0 ≤ x ≤ ε.
There is still a unit drift present so that the process takes time ε to
reach the point x = ε. The probability starting at ε that the
process hits M before it reaches zero again is easily seen to be
1− cε. It follows from this that the expected time to reach M
starting from any x is finite and the conclusion follows.



It seems remarkable that the process X f0 behaves as if there is a
reflecting barrier at zero. It does not pass through zero to the
negative half-axis because f0(0) = 0. This means that it slows
down as it gets near zero, but, unlike the Black-Scholes process, it
actually hits zero. The drift, 1 + f (0) = 1, so that it then moves
away from zero but it hits zero uncountably many times (if it hits
it once), just as the reflecting Brownian process, |W (t)|, does,
because the set of zeros of X (t) is a perfect set. It is interesting
that X reflects off zero even though there is no local time in its Ito
representation. This completes the proof that for the optimal
investment strategy, f = f0, the fortune of the young man reaches
M in a finite time with minimum expected value. It is remarkable
that the young man goes broke repeatedly with positive probability
before achieving his goal.



Remark. It is often remarked of some rich people that because
they were “aggressive, they went into bankruptcy several times
before making it”. Somehow, mathematics seems to have already
been aware of this common observation! Note that it is always
true that V (x) ≤ M − x since an investor can always choose f ≡ 0
and “save the way to retirement”.



Corollaries of the solution to the problem The solution is not
so trivial and illustrates the theme that “one must guess the
answer” in optimal stochastic control problems which are convex
optimization problems and one needs to find the appropriate
extreme point of a certain convex set. Some people deny this and
believe instead that the solution, can be found systematically, in a
crank-turning way, by using the Bellman equation directly,
without any guessing. I claim this problem, among others, provides
a convincing counterexample. Some people (maybe in this very
audience!) also think that in some such problems one can avoid
the use of martingales and semimartingale ideas. I claim that for
any interesting optimal control problem it is impossible to avoid
martingale ideas because somewhere in the proof of optimality use
must be made that the strategy is actually nonanticipating - since
with anticipating strategies one can do strictly better in every
problem of any interest.



Remark. The only way to make use of nonanticipatingness is to
use the martingale optional sampling theorem; how else can one do
it? This is a metamathematical argument but it seems
unimpeachable. I will also discuss Ito modeling for pricing
derivatives, widely used, which some people, including me, believe
played a leading role in the 2008 worldwide economic disaster.
There are people in this audience who may dispute this which is of
course why I am bringing it up.

A graph of g(x) = −V ′(x) is given in Figure 2, a graph of the
optimal payoff, V (x), is given in Figure 3, and a graph of the
optimal investment strategy, f0, is given in Figure 4.
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Generalization of the problem
A more general model for retirement than the model used so far,
namely,
dX (t) = (1 + f (X (t)))dt + f (X (t))dW (t),X (0) = x ,
would allow the diffusion term to be any fixed function of f (X (t))
rather than simply f (X (t)) itself. The most natural choice was
made above because this is used in the Black-Scholes-Samuelson
model for stock prices which was arrived at under the argument
that doubling an investment empirically seems to double the
volatility, but this is a crude argument and other possibilities seem
to be worth exploring. We propose considering the more general
model:
dX (t) = (1 + f (X (t))dt + φ(f (X (t)))dW (t),X (0) = x ,
where φ(u) is any increasing function. For tractibility, we will
restrict the discussion to the particular forms φ(u) = Auα, where
A > 0, and α > 0 are parameters.



The same method of proof shows that for α = 1, as before, but
using general A, we have
g(x ; A;α = 1) = −V ′(x ; A;α = 1) = g( x

A2 ; A = 1;α = 1).
It follows that
V (x ; A;α = 1) = A2V ( x

A2 ; A = 1; M = M
A2 ).

This is as expected; the original model used f as both the drift and
the diffusion parameter because one could scale time to make the
diffusion equal to one in appropriate time units. However if one
wants to compare models, then the parameter A must be retained.
If one does this, one sees that
g(x ; A;α = 1)→ g(0; A = 1;α = 1) ≡ 1

so that limA→∞ V (x ; A;α = 1) =
∫M
x du = M − x .



The conclusion is that if the investor has the choice of investing in
a risky market or instead to be conservative by saving his salary
without investing, then the conservative strategy is asymptotically
(as A→∞) superior even though the resulting time to retirement
is M − x , which is the maximum delay among all models since
there is no advantage to investment. The conservative investment
advice to avoid risk is usually given to older investors; our
modelling assumptions conclusions bear this out, even for young
investors in the limit as risk gets very large.



We next consider the case A = 1, and 1
2 ≤ α < 1. Since the

diffusion speed is larger for α < 1 than for α = 1, one would think
that as α decreases the expected time would increase and investing
would be disadvantageous, but this is surprisingly not the case, as
we see below. Moreover we will show that for A = 1, and
0 < α < 1

2 , one can find investment strategies that allow
retirement in time ε, arbitrarily small. Another surprise is that
there is a sharp discontinuity in V (x , α) as α ↑ 1

2 . We show that
V (x , α) = 0 for α < 1

2 but as we see below
V (x ;α = 1

2 ) = 1
2 [e−2x − e−2M ].



Requiring that Y be a martingale for the best choice of f = f0

above gives an ode for g(x) = g(x ,A, α) = −V̄ ′(x ,A, α). After a
calculation, very similar to the one above for A = α = 1, the ode is:
−g ′(x)(1−g(x))2α−1

g2α(x)
=

(1− 1
2α

)2α−1

A2α
.

Integrating gives∫ 1
g(x)

(1−u)2α−1

u2α du = x
(1− 1

2α
)2α−1

A2α
+ c.

Again we guess that c = 0 and we can solve for g(x) ∈ [0, 1] for
any x ≥ 0. We see that so long as α > .5, there is no trouble. We
can write (since V (M) = 0),

V (x) =
∫M
x −V ′(u)du =

∫M
x g(u)du =

∫M
x

g(u)
g ′(u) g ′(u)du =

b(α)
∫ g(x)

0 ( 1−u
u )2α−1du,

where b(α) =
(1− 1

2α
)2α−1

αA2 . Finally we have that f0 = f0(x ,A, α) is
given by
f0(x) = ( 1

g(x) − 1) 1
1− 1

2α

.



The case α < 1
2 is especially interesting. The argument given for

guessing the optimal V̂ breaks down and says there is no V̂ that
will make V̂ (X f (t)) + t a submartingale for all choices of f = f (x)
except the trivial case V̂ (x) ≡ 0. This is the best lower bound that
submartingale theory can provide which lead one to suspect that
V (x ;α) ≡ 0 for α < 1

2 . To prove this we need to find an f that
makes the expected time to reach M arbitrarily small. Consider the
investment strategy
f (x) = 0, 0 ≤ x ≤ ε, f (x) = c , ε < x < M.
If we can find a function, g = g(x) = gε,c(x), 0 ≤ x ≤ M for which
Y (t) = g(Xt) + t is a martingale and g(M) = 0, then the
martingale theorem gives that g(x) = Y (0) = ExY (τM) = ExτM .
Ito calculus gives that g must be, for appropriate constants,
A′,B,D,
g(x) = D − x , 0 ≤ x ≤ ε,
g(x) = M−x

1+c + A′(e−
2(1+c)

c2α x − e−
2(1+c)

c2α
M), ε ≤ x ≤ M.



Finally, set ε = 1
1+c , and let c →∞ and verify that A′ and D tend

to zero as c →∞ and we have shown that V (x ;α) ≡ 0 for α < 1
2 .

Under this model one can retire in arbitrarily small expected time.
This should probably be interpreted that the model with α < 1

2
does not represent the real world; models should be looked at
carefully and rejected if they do not conform to reality, unless of
course, reality is incorrect.



Part 2. How not to do statistics.

The problem is to find the density, fθ(x),−1 ≤ x ≤ 1, of the
empirical correlation coefficient:

θ =
∫ 1

0 W1(t)W2(t)dt−(
∫ 1

0 W1(s)ds)(
∫ 1

0 W2(t)dt)√∫ 1
0 W 2

1 (t)dt−(
∫ 1

0 W1(t)dt)2
√∫ 1

0 W 2
2 (t)dt−(

∫ 1
0 W2(t)dt)2

,

of two independent standard Wiener processes, W1,W2. A simple
Monte Carlo computation allows one to graph the histogram of θ.
Our main motivation is to compare what probability theory can
contribute to this study vs. simple Monte Carlo. We believed we
would be able to calculate fθ(x) to arbitrary precision and thereby
increase the accuracy of the Monte Carlo calculation, however we
did not succeed despite much effort. We obtain (with much effort)
an explicit formula for the variance of θ. We could derive similar
formulas for the higher moments of θ with still more effort. It is
frustrating that we cannot obtain a formula for the density of θ,
from which one can get arbitrary accuracy.



We can, with a hard calculation, give a Fredholm integral equation
for fθ(x),−1 < x < 1, which has a provably unique solution
(because it determines the moments of fθ, and the moment
problem has a unique solution because the support of fθ is
compact). However, the integral equation is of the first, or difficult
Fredholm type, and it is not at all clear how to get anything useful
from it such as, for example, the asymptotics of fθ(x) as x → ±1.
The Monte Carlo computation indicates that fθ(±1) = 0, but this
may not be true. Thus, our purpose is to draw attention to this
problem in the hope that others will be able to salvage something
useful from our technique which we believe is new.



Let Wi (t), 0 ≤ t ≤ 1, i = 1, 2 denote two independent standard
Brownian motions on [0, 1] and define the empirical correlation
between them,

θ =
∫ 1

0 W1(t)W2(t)dt−(
∫ 1

0 W1(s)ds)(
∫ 1

0 W2(t)dt)√∫ 1
0 W 2

1 (t)dt−(
∫ 1

0 W1(t)dt)2
√∫ 1

0 W 2
2 (t)dt−(

∫ 1
0 W2(t)dt)2

.

One might naively expect that θ would be small because the
processes, Wi are independent. However, Brownian motion is
self-correlated, so a spurious correlation is induced between the
independent Brownian motions. It is a frequent mistake to use the
correlation of the partial sums of time series as a proxy for the
correlation of the time series themselves. This bad practice gives
rise to spurious correlation. We seem to be the first to attempt to
obtain the actual distribution of the spurious correlation.



We will show that the density of θ satisfies the integral equation∫ 1
0 dxfθ(x)x2K (xz) = g(z), 0 ≤ z ≤ 1,

where the kernel, K (x , z) = K (xz), and g = g(z) are given by

K (u) =
∑∞

n=1 u2(n−1) n!(n−1)!22n

(2n)! = 22F1(1, 1; 3
2 , u

2) = 2 sin−1(u)

u
√

1−u2
,

and with v = v(t, z) =
√

t2 + z2(1− t2),

g(z) =
∫ 1

0 dt
∫∞

0 duS(u
√

1 + v)S(u
√

1− v)uv [T (u
√

1 + v)−
T (u
√

1− v)],

where S(u) =
√

u
sinh u and T (u) = 1

u
S ′(u)
S(u) .



This is a Fredholm equation of the “bad” kind, but it is easy to
show that it uniquely determines fθ because K and g are known
analytic functions in the unit disk, and so the moments of fθ can in
principle be determined by equating coefficients of powers of z ; the
moment problem on a bounded interval determines the density.
We obtain the following expression for the variance of θ by
comparing coefficients of z2,

Eθ2 =
∫∞

0 du1

∫∞
0 du2S(u1)S(u2) u1u2

u1+u2
(T (u1)−T (u2)

u1−u2
).

It does not seem possible to do this double integral exactly in
elementary terms; but it has removable singularities and converges
very nicely at all points where any of u1, u2, or u1 − u2 vanishes.
The numerical value is µ2 = .240522 . . ., according to our
calculation. Thus the standard deviation of θ is nearly .5 which is
hard to explain if one alleges that the correlation is zero.



There are formulas for all the moments of θ, so we can compute
the density, fθ(x), in principle, but we have to admit that despite
much effort we were unable to get a formula or an algorithm which
would allow the calculation of the density of θ to high precision.
The spurious correlation is induced because each Wiener process is
“self-correlated” in time since a Wiener process is an integral of
pure noise and so its values at different time points are correlated.
This phenomenon is well-known to probabilists because it is
involved in the arc-sine law. Some practitioners of statistics,
unaware of the arc-sine laws, overlook the spurious correlation
between independent sum processes, Si ,S

′
i , i = 1, . . . , n, which are

sums of independent random variables, and erroneously believe
that the so-called empirical running correlation,

θn =
∑n

i=1 SiS
′
i−

1
n

(
∑n

i=1 Si )(
∑n

i=1 S
′
i )√∑n

i=1 S
2
i −

1
n

(
∑n

i=1 Si )
2
√∑n

i=1(S ′i )2− 1
n

(
∑n

i=1 S
′
i )2

,

ought to be small. The first few moments of θ, the limit in law of
θn, (approximate Si by W ( i

n )
√

n by the central limit theorem)
show that θn is non-negligible for large n.



It is therefore clear the distribution of θ need not be accurately
computed because one should not be using the partial sums as a
proxy for the actual time series. Nevertheless this is an nice
problem for developing probabilistic methodology.

Getting the distribution of θ.
Jan R. Magnus gave the moments of the ratio of a pair of
quadratic forms in normal variables by a technique similar to ours.
Our paper gives a method for the correlation coefficient which is a
ratio involving three quadratic forms of normal variables as well as
square roots. It seems clear that the ”three-form” problem solved
here requires a new method.



The empirical correlation is,

θ =
∫ 1

0 W1(t)W2(t)dt−(
∫ 1

0 W1(s)ds)(
∫ 1

0 W2(t)dt)√∫ 1
0 W 2

1 (t)dt−(
∫ 1

0 W1(t)dt)2
√∫ 1

0 W 2
2 (t)dt−(

∫ 1
0 W2(t)dt)2

.

Noting that mi =
∫ 1

0 Wi (t)dt, i = 1, 2 are the empirical mean

values,we can also write θ =
∫ 1

0 (W1(t)−m1)(W2(t)−m2)dt√∫ 1
0 (W1(t)−m1)2dt

√∫ 1
0 (W2(t)−m2)2dt

,

and note that −1 ≤ θ ≤ 1 by Schwarz’s inequality. We will use a
special method to obtain the distribution of θ somewhat similar to
earlier uses made of a related idea. First note that
θ =

X1,2√
X1,1X2,2

, where

X1,2 = X2,1 =
∫ 1

0 W1(t)W2(t)dt − (
∫ 1

0 W1(s)ds)(
∫ 1

0 W2(t)dt)

Xi ,i =
∫ 1

0 W 2
i (t)dt − (

∫ 1
0 Wi (t)dt)2, i = 1, 2.



Note we can write for i , j ∈ {1, 2},
Xi ,j =

∫ 1
0 dWi (s1)

∫ 1
0 dWj(s2)[min(s1, s2)− s1s2],

because the right side is, interchanging order of integrations,∫ 1
0 dWi (s1)

∫ 1
0 dWj(s2)[

∫ min(s1,s2)
0 dt − (

∫ s1

0 ds)(
∫ s2

0 dt)] =

=
∫ 1

0 dt(
∫ 1
t dWi (s1))(

∫ 1
t dWj(s2)−

(
∫ 1

0 ds
∫ 1
s dWi (s1))(

∫ 1
0 dt

∫ 1
t dWj(s2))) =

=
∫ 1

0 dt(Wi (1)−Wi (t))(Wj(1)−Wj(t))− (
∫ 1

0 (Wi (1)−
Wi (s))ds)(

∫ 1
0 dt(Wj(1)−Wj(t))dt) =

=
∫ 1

0 Wi (t)Wj(t)dt − (
∫ 1

0 Wi (s)ds)(
∫ 1

0 Wj(t)dt) = Xi ,j .



Calculating F (β1, β2, a) = Eeaβ1β2X1,2−
β2

1
2 X1,1−

β2
2

2 X2,2

.

Define for |a| ≤ 1, βi ≥ 0, i = 1, 2 the integral

F (β1, β2, a) = Eeaβ1β2X1,2−
β2

1
2
X1,1−

β2
2

2
X2,2 .



We first prove that the expectation is finite under the given
conditions. This is because X1,2 = θ

√
X1,1X2,2 and |θ| ≤ 1 so the

exponent is at most
−1

2 (β1

√
X1,1 − β2

√
X2,2)2 ≤ 0.

Thus the expectand is bounded by unity, and so for this range,
F (β1, β2, a) ≤ 1. To calculate it, define the kernel,
Ki1,i2(s1, s2) = K (i1, s1; i2, s2); i1, i2 ∈ {1, 2}, s1, s2 ∈ [0, 1], and note

that F (β1, β2, a) = Ee
1
2

∑2
i1=1

∑2
i2=1

∫ 1
0

∫ 1
0 Ki1,i2

(s1,s2)dWi1
(s1)dWi2

(s2)
,

where Ki ,i (s1, s2) = −β2
i M(s1, s2), i = 1, 2; s1, s2 ∈ [0, 1],

K1,2(s1, s2) = K2,1(s1, s2) = aβ1β2M(s1, s2), s1, s2 ∈ [0, 1], and
M(s1, s2) = min(s1, s2)− s1s2, for s1, s2 ∈ [0, 1].



The expectation, F (β1, β2, a), is a Gaussian integral and we
calculate it in terms of a Fredholm determinant. This determinant
is the product of the eigenvalues of I − Ki1,i2(s1, s2), i.e.
det(I − K ) =

∏
(1− α), where α runs through all the

eigenvaluesof the kernel K , and then F (β1, β2, a) = 1√
det(I−K)

. To

see this note that if αn are the eigenvalues of Ki1,i2(s1, s2), and if
φn(i1, s1) are the corresponding orthonormalized eigenfuctions,
then

∑2
i1=1 Ki1,i2(s1, s2)φn(i1, s1)ds1 = αnφn(i2, s2), i2 ∈

{1, 2}, s2 ∈ [0, 1],
’s theorem states that we may represent K by a series in the
complete set of orthonormal eigenfunctions, Ki1,i2(s1, s2) =∑∞

n=1 αnφn(i1, s1)φn(i2, s2); i1, i2 ∈ {1, 2}, s1, s2 ∈ [0, 1].
There are a discrete set of values α for which there is a nonzero
function φ(·, ·) satisfying the above eigenequation. Because of the
form of the kernel, K , we guess that the eigenfunctions are of
separableform:
φ(i , s) = ξiφ(s); i ∈ {1, 2}, s ∈ [0, 1],
where φ(s) is an eigenfunction of the kernel,
M = M(s1, s2) = min(s1, s2)− s1s2 which is the covariance of
pinned Brownian motion on [0, 1]. The eigenequation for M is∫ 1

0 M(s1, s2)φ(s1)ds1 = λφ(s2), s2 ∈ [0, 1],
and it is easy to verify that the eigenfunctions and eigenvalues of
M are φn(t) =

√
2 sin(πnt); n ≥ 1, t ∈ [0, 1], λn = 1

π2n2 ; n ≥ 1.
since each eigenfunction, φn(i1, s1) has two components, and the
eigenfunctions satisfy the orthonormality condition:∑2

i1=i

∫ 1
0 φm(i1, s1)φn(i1, s1)ds1 = δm,n.



Mercer’s theorem states that we may represent K by a series in the
complete set of orthonormal eigenfunctions,
Ki1,i2(s1, s2) =

∑∞
n=1 αnφn(i1, s1)φn(i2, s2); i1, i2 ∈ {1, 2}, s1, s2 ∈

[0, 1].
There are a discrete set of values α for which there is a nonzero
function φ(·, ·) satisfying the above eigenequation. Because of the
form of the kernel, K , we guess that the eigenfunctions are of
separableform:
φ(i , s) = ξiφ(s); i ∈ {1, 2}, s ∈ [0, 1],
where φ(s) is an eigenfunction of the kernel,
M = M(s1, s2) = min(s1, s2)− s1s2 which is the covariance of
pinned Brownian motion on [0, 1]. The eigenequation for M is∫ 1

0 M(s1, s2)φ(s1)ds1 = λφ(s2), s2 ∈ [0, 1],
and it is easy to verify that the eigenfunctions and eigenvalues of
M are φn(t) =

√
2 sin(πnt); n ≥ 1, t ∈ [0, 1], λn = 1

π2n2 ; n ≥ 1.



We find that
φn(i1, s1) = ξi1φn(s1) is an eigenvalue of K with eigenvalue αn if
and only if
−β2

2ξ1 + aβ1β2ξ2 = αn
λn
ξ1

aβ1β2ξ1 − β2
1ξ2 = αn

λn
ξ2.

There are thus two eigenvalues, α±n for eachλn = 1
π2n2 ; n ≥ 1 and

φn. These eigenvalues are α±n = λn
−(β2

1 +β2
2 )±
√

(β2
1−β2

2 )2+4a2β2
1β

2
2

2 .
We thus obtain that det(I − K ) =

∏
±
∏∞

n=1(1− α±n ) =∏∞
n=1(1− (z+)2

π2n2 )
∏∞

n=1(1− (z−)2

π2n2 ) = sin (z+)
z+

sin (z−)
z− ,

z± =

√
−(β2

1 +β2
2 )±
√

(β2
1−β2

2 )2+4a2β2
1β

2
2

2 ,
where we used the product formula,
sin z
z =

∏∞
n=1(1− z2

π2n2 ).



Noting that z± are purely imaginary, we write z± = ic±, and so
sin z
z = sinh iz

iz , we see that the determinant is simply

det(I − K ) = sinh c+

c+
sinh c−

c− , and

c± = c±(β1, β2, a) =

√
(β2

1 +β2
2 )±
√

(β2
1−β2

2 )2+4a2β2
1β

2
2

2 .
We finally obtain F (β1, β2, a), using Mercer’s theorem

F (β1, β2, a) =
∏
n

Ee
1
2

[
∑2

i1=1 αn
∫ 1

0 φn(i1,s1)dW (si1 )]2

=
∏
n

(1−αn)−
1
2 =

1√
sinh c+

c+
sinh c−

c−

,

(1)
since

∑2
i1=1 ξi1φn(i1, s1)dWi1(s1) are standard normal and

independent.



The special trick to get the integral equation for fθ

.

If γi ≥ 1, βi ≥ 0, i = 1, 2, and |a| < 1, the quantities,
F (
√
γ1β1, β2,

a√
γ1

), F (β1,
√
γ2β2,

a√
γ2

), F (
√
γ1β1,

√
γ2β2,

a√
γ1γ2

),

are finite and well-defined, and we may define the quantity,
G = G (γ1, γ2, a), by
G =

∫∞
0

dβ1
β1

∫∞
0

dβ2
β2

[F (β1, β2, a)− F (
√
γ1β1, β2,

a√
γ1

)−
F (β1,

√
γ2β2,

a√
γ2

) + F (
√
γ1β1,

√
γ2β2,

a√
γ1γ2

)].

By the above argument, this is equal to

G (γ1, γ2, a) =
∫∞

0
dβ1
β1

∫∞
0

dβ2
β2

Eeaβ1β2X1,2(e−
β2

1X1,1
2 −

e−
γ1β

2
1X1,1
2 )(e−

β2
2X2,2

2 − e−
γ2β

2
2X2,2
2 ).



The key idea in calculating G (γ1, γ2, a) is to employ integrals of
the form dβi

βi
because these allow replacing βi by βi√

Xi,i
without

introducing a Jacobian. Indeed, making these transformations and
putting the expectation back inside the integral, we arrive at the
following equation for the moment generating
function,φθ(z) = Eezθ, of θ,

G (γ1, γ2, a) =

∫ ∞
0

dβ1

β1

∫ ∞
0

dβ2

β2
φθ(aβ1β2)(e−

β2
1

2 −e−
γ1β

2
1

2 )(e−
β2

2
2 −e−

γ2β
2
2

2 ) =

(2)
=

∫∞
0

dβ1
β1

∫∞
0

dβ2
β2

[F (β1, β2, a)− F (
√
γ1β1, β2,

a√
γ1

)−
F (β1,

√
γ2β2,

a√
γ2

) + F (
√
γ1β1,

√
γ2β2,

a√
γ1γ2

)].



We think of the last identity as one determining the density, fθ(x),
of θ. We put the expression for F into (2) and differentiate both
sides of (2) wrt. both γ1 and γ2. We obtain, relying on the
corollary of Fubini’s theorem that states that integration and
differentiation wrt. a parameter can be interchanged if the integral
of the differentiated integrand converges absolutely, which it does,
on both sides, as we will see later, for certain values of a:
∂2G(γ1,γ2,a)
∂γ1∂γ2

=
∫∞

0 dβ1

∫∞
0 dβ2

β1β2
4 Eeaβ1β2θe−γ1

β2
1

2 e−γ2
β2

2
2 =

=
∫∞

0
dβ1
β1

∫∞
0

dβ2
β2

∂2

∂γ1∂γ2
F (
√
γ1β1,

√
γ2β2,

a√
γ1γ2

).



e may write this in the form of an integral equation∫ 1
0 dxx2fθ(x)K (xz) = g(z), 0 ≤ z ≤ 1,

where g(z) is the right hand side and where

K (xz) =
∑∞

n=1
(xz)2(n−1)

2n
(n!)222n

(2n)! .
Unfortunately, this is an integral equation of the “bad”, or “first”
kind; the good kind is of the form f − Kf = g . Equations of the
bad kind are not discussed much in the integral equation literature
because there are severerestrictions on g , which must be smooth
enough to be in the range of K . But there is another way to look
at our particular one, namely as a set of inequalities:∫ 1

0 f (x)K (x , z) ≤ g(z), 0 ≤ z ≤ 1,

if maximize the linear form,
∫ 1

0 f (x)dx subject to the
constraints,we have an infinite dimensional linear program whose
answer ought to bef (x) = fθ(x), 0 ≤ x ≤ 1 since fθ satisfies the
inequalities and they hold with equality. Moreover, we have seen
that any function f which satisfies the inequalities with equality
has its moments uniqely determined by them and since we are on a
finite interval, the moment problem is unique.



A graph and a conclusion

.

We are not the first to point out the spurious correlation created
by using partial sums instead of the actual variates of time series.
We seem to be the first to try to obtain the actual distribution of
the correlation coefficient by a formula. While approximations can
be obtained simple Monte Carlo, it might be useful to have an
exact formula and accurate graph of the density of θ. This perhaps
has its main interest in pure probability theory and to explore
methods of computation. We give a graph of the histogram of one
million samples of θ (Figure 1).
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The statistic which uses the actual random variables, Xk ,X
′
k

instead of their partial sums,
∑k

j=1 Xj ,
∑k

j=1 X ′j does not produce
spurious correlation. Indeed in the limit, n→∞,

θ′n =
1
n

∑n
k=1 XkX

′
k−( 1

n

∑n
k=1 Xk )( 1

n

∑n
k=1 X

′
k )

(
√

1
n

∑n
k=1 X

2
k−( 1

n

∑n
k=1 Xk )2)(

√
1
n

∑n
k=1 X

2
k−( 1

n

∑n
k=1 Xk )2)

,

is easily seen to tend to zero, by the law of large numbers, if the
r.v’s, Xk ,X

′
k , k = 1, . . . are iid sequences, independent of each

other, with positive finite variances. This shows that the spurious
correlation is a consequence of using the partial sums in place of
the variables themselves.
The reason that the partial sums are self-correlated and thereby
induce spurious correlation seems related to the arcsine law. The
history of Sparre Andersen’s major combinatorial contribution to
the proof of the arcsine law, raises the question of whether a
formula can be derived even for discrete sequences of partial sums
by similar combinatorial methods employing cyclic permutations.
This would be very elegant, but seems unlikely.



The question is why is it so easy to obtain a graph without using
any analytical probability theory and so hard to get much further
with analytical probability theory?


