Robert C. DALANG \& Albert N. SHIRYAEV
Ecole Polytéchnique Fédérale de Lausanne
Steklov Mathematical Institute
Moscow State University

A QUICKEST DETECTION PROBLEM

with an expensive cost of observations
§ 1. A WELL-KNOWN QUICKEST DETECTION MODEL:
(a) observations $X=\left(X_{t}\right)_{t \geq 0}$ obey the equation

$$
d X_{t}=r I(\theta \leq t) d t+\sigma d B_{t}, \quad X_{0}=0,
$$

or

$$
X_{t}= \begin{cases}\sigma B_{t}, & t<\theta, \\ r(t-\theta)+\sigma B_{t}, & t \geq \theta\end{cases}
$$

(b) Brownian motion B and random variable θ are independent, usually $\theta \sim \operatorname{Exp}(\pi, \lambda)$, i.e.,

$$
\mathrm{P}(\theta=0)=\pi, \mathrm{P}(\theta>t \mid \theta>0)=e^{-\lambda t}, \lambda>0 ;
$$

(c) parameters $\sigma>0, r \in \mathbb{R}, \lambda>0$ are known; $\pi \in[0,1]$.

NEW MODEL STOPPING + CONTROL:

observable process $X^{h}=\left(X_{t}^{h}\right)_{t \geq 0}$ obey the equation

$$
d X_{t}^{h}(\omega)=r h_{t}(\omega) I(\theta(\omega) \leq t) d t+\sigma \sqrt{h_{t}(\omega)} d B_{t}(\omega)
$$

with an $\mathcal{F}_{t^{-}}$measurable $h_{t}=h_{t}(\omega) \in[0,1]$ (all objects are given on the filtered probability space $\left.\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathrm{P}\right)\right) ; B$ and θ are independent.

The pair $\left(h, X^{h}\right)$ is called a control system. Here

$$
h_{t}(\omega)=h_{t}\left(X^{h}(\omega)\right)
$$

is a synthesis-control, where the mapping $(t, x) \rightsquigarrow h_{t}(x)$ is $\mathcal{C}_{t}=$ $\sigma\left\{x: x_{s}, s \leq t\right\}$-measurable.

The system $\left(h(x), X^{h}\right)$ is called admissible if stochastic differential equation

$$
d X_{t}^{h}(\omega)=r h_{t}\left(X^{h}(\omega)\right) I(\theta(\omega) \leq t) d t+\sigma \sqrt{h_{t}\left(X^{h}\right)} d B_{t}(\omega)
$$

has a solution*.

The admissible pairs (h, X) (where $X=X^{h}$) will be called canonical ${ }^{* *}$ control system.

* weak or strong; the class of weak solutions is larger than the class of strong solutions; from point of view of real applications, it is better to have strong solutions; from point of view of distributional analysis of the problem, it is reasonable to operate with weak solutions.

[^0]§ 2. To formulate our problem we introduce stopping times $\tau=$ $\tau(x), x \in C=C[0, \infty)$, which play the role of the signal about appearing of a 'change-point' $\theta=\theta(\omega)$.

For the process $X=X^{h}$,

$$
\begin{aligned}
\tau(X) \text { denotes } & \text { the composition }(\tau \circ X)(\omega), \\
& \text { i.e., random variable } \tau(X(\omega)) .
\end{aligned}
$$

The set (h, X, τ) plays a key role in our formulation of the quickest detection problem. The pair (h, τ) is called a strategy.

With (h, τ) we relate the penalty function

$$
G(h, \tau)=I(\tau(X)<\theta)+a(\tau(X)-\theta)^{+}+b \int_{0}^{\tau(X)} h_{t}(X) d t
$$

where θ is a random variable, $\theta \sim \operatorname{Exp}(\pi, \lambda): \mathrm{P}(\theta=0)=\pi$, $\mathrm{P}(\theta>t \mid \theta>0)=e^{-\lambda t}$.

Denote by P_{π} the distribution of X under assumption $\mathrm{P}(\theta=0)=\pi$. Note that $\operatorname{Law}\left(B \mid \mathrm{P}_{\pi}\right)$ does not depend on π.

The value function of the "stopping-control" problem is defined by

$$
V^{*}(\pi)=\inf _{(h, \tau)} \mathrm{E}_{\pi} G(h, \tau), \quad \pi \in[0,1]
$$

We want to find $V^{*}(\pi)$ and describe an optimal strategy $\left(h^{*}, \tau^{*}\right)$.

§3. SOME AUXILIARY PROPOSITIONS.

LEMMA 1. Function $V^{*}=V^{*}(\pi)$ is concave.

Proof. By formula of complete probability,
$\mathrm{E}_{\pi} G(h, \tau)=\pi \mathrm{E}_{\pi}\left[\tau+\int_{0}^{\tau} h_{t} d t \mid \theta=0\right]$
$+(1-\pi) \mathrm{E}_{\pi}\left[I(\tau<\theta)+a(\tau-\theta) I(\tau>\theta)+b \int_{0}^{\tau} h_{t} d t \mid \theta>0\right]$.
None of expectations $\mathrm{E}_{\pi}(\cdot \mid \theta=0)$ and $\mathrm{E}_{\pi}(\cdot \mid \theta>0)$ depends on π. So, $\mathrm{E}_{\pi} G(h, \tau)$ is an affine function of π, and $V^{*}(\pi)$ as infimum of affine functions is a concave function.

In the sequel, an important role is played by a priori and a posteriori probabilities $\left(p_{t}\right)_{t \geq 0}$ and $\left(\pi_{t}^{h}\right)_{t \geq 0}$:

$$
\begin{aligned}
p_{t} & =\mathrm{P}_{\pi}(\theta \leq t)=\pi+(1-\pi)\left(1-e^{-\lambda t}\right) \\
\pi_{t}^{h} & =\mathrm{P}_{\pi}\left(\theta \leq t \mid \mathcal{F}_{t}^{X^{h}}\right), \quad \text { where } \mathcal{F}_{t}^{X^{h}}=\sigma\left(X_{s}^{h}, s \leq t\right)
\end{aligned}
$$

LEMMA 2. For each strategy (h, τ) we have

$$
\mathrm{E}_{\pi} G(h, \tau)=\mathrm{E}_{\pi}\left[\left(1-\pi_{\tau}^{h}\right)+a \int_{0}^{\tau} \pi_{t}^{h} d t+b \int_{0}^{\tau} h_{t} d t\right]
$$

The lemma follows from

$$
\mathrm{E}_{\pi} I(\tau>\theta)=\mathrm{E}_{\pi}\left(1-\pi_{\tau}^{h}\right)
$$

and

$$
\begin{aligned}
\mathrm{E}_{\pi}(\tau-\theta)^{+} & =\mathrm{E}_{\pi}(\tau-\theta) I(\tau \geq \theta)=\mathrm{E}_{\pi} \int_{0}^{\infty} I(\theta \leq t<\tau) d t \\
& =\mathrm{E}_{\pi} \int_{0}^{\infty} \mathrm{E}_{\pi}\left[I(\theta \leq t) I(t<\tau) \mid \mathcal{F}_{t}^{X^{h}}\right] d t \\
& =\mathrm{E}_{\pi} \int_{0}^{\infty} I(t<\tau) \mathrm{E}_{\pi}\left[I(\theta \leq t) \mid \mathcal{F}_{t}^{X^{h}}\right] d t \\
& =\mathrm{E}_{\pi} \int_{0}^{\tau} \pi_{t}^{h} d t,
\end{aligned}
$$

where we used the fact that $\{\tau \leq t\} \in \mathcal{F}_{t}^{X^{h}}$.

The a priori probability $\left(p_{t}\right)_{t \geq 0}$ solves the equation

$$
d p_{t}=\lambda\left(1-p_{t}\right) d t, \quad t \geq 0,
$$

with $p_{0}=\pi$.

In the following lemmas we give stochastic differential equations for

$$
\pi_{t}^{h}=\mathrm{P}\left(\theta \leq t \mid \mathcal{F}_{t}^{X^{h}}\right) \quad \text { and } \quad \varphi_{t}^{h}=\frac{\pi_{t}^{h}}{1-\pi_{t}^{h}}
$$

We can assume that $\pi<1$, since if $\pi=1$, then $\pi_{t}^{h}=1$ for all $t>0$.

$$
\text { Let } \mu_{t, u}^{h}=\operatorname{Law}\left(X_{s}^{h}, s \leq t \mid \theta=u\right) \text { (these measures don't depend on } \pi
$$

A special role belongs to the measures $\mu_{t, 0}^{h} \quad$ and $\quad \mu_{t, t}^{h} \quad\left(\mu_{t, t}^{h}=\mu_{t}^{h}\right.$ $\forall u>t$, and also for $u=\infty$ when there is no "disorder" at all).

The Radon-Nikodým derivative $L_{t}^{h}=\frac{d \mu_{t, 0}^{h}}{d \mu_{t, t}^{h}} \equiv \frac{d\left(\operatorname{Law}\left(X_{s}^{h}, s \leq t\right) \mid \theta=c\right.}{d\left(\operatorname{Law}\left(X_{s}^{h}, s \leq t\right) \mid \theta=\right.}$ is given by the formula

$$
L_{t}^{h}=\exp \left\{\int_{0}^{t} \frac{r}{\sigma^{2}} d X_{s}^{h}-\frac{1}{2} \int_{0}^{t} \frac{r^{2}}{\sigma^{2}} h_{s} d s\right\}
$$

By Itô's formula, $d L_{t}^{h}=\frac{r}{\sigma^{2}} L_{t}^{h} d X_{t}^{h}$. Assuming that $\pi \neq 1$, put

$$
\varphi_{t}^{h}=\frac{\pi_{t}^{h}}{1-\pi_{t}^{h}}
$$

LEMMA 3. We have

$$
\varphi_{t}^{h}=\varphi_{0}^{h} e^{\lambda t} L_{t}^{h}+\lambda \int_{0}^{t} e^{\lambda(t-u)} \frac{L_{t}^{h}}{L_{u}^{h}} d u, \quad d \varphi_{t}^{h}=\lambda\left(1+\varphi_{t}^{h}\right) d t+\frac{r}{\sigma^{2}} \varphi_{t}^{h} d X_{t}^{h}
$$

Proof. By Bayes' formula,

$$
\begin{aligned}
\varphi_{t}^{h} & =\frac{\mathrm{P}_{\pi}\left(\theta \leq t \mid \mathcal{F}_{t}^{X^{h}}\right)}{\mathrm{P}_{\pi}\left(\theta>t \mid \mathcal{F}_{t}^{X^{h}}\right)}=\frac{\pi \frac{d \mu_{t, 0}}{d \mu_{t, \infty}}+(1-\pi) \int_{0}^{t} \lambda e^{-\lambda u} \frac{d \mu_{t, u}}{d \mu_{t, \infty}} d u}{(1-\pi) \int_{t}^{\infty} \lambda e^{-\lambda u} \frac{d \mu_{t, u}}{d \mu_{t, \infty}} d u} \\
& =\frac{\pi}{1-\pi} e^{\lambda t} L_{t}^{h}+\lambda \int_{0}^{t} e^{\lambda(t-u)} \frac{L_{t}^{h}}{L_{u}^{h}} d u
\end{aligned}
$$

where we used the formulas $\frac{d \mu_{t, u}}{d \mu_{t, \infty}}= \begin{cases}1 & \text { for } u \geq t, \\ L_{t}^{h} / L_{u}^{h} & \text { for } u \leq t .\end{cases}$

LEMMA 4. (a) The a posteriori probability $\left(\pi_{t}^{h}\right)_{t \geq 0}$ satisfies the stochastic differential equation

$$
d \pi_{t}^{h}=\lambda\left(1-\pi_{t}^{h}\right) d t+\frac{r}{\sigma^{2}} \pi_{t}^{h}\left(1-\pi_{t}^{h}\right)\left(d X_{t}^{h}-r h_{t} \pi_{t} d t\right)
$$

(b) The process $X^{h}=\left(X_{t}^{h}\right)_{t \geq 0}$ admits the innovation representation

$$
d X_{t}^{h}=r h_{t} \pi_{t}^{h} d t+\sigma \sqrt{h_{t}} d \bar{B}_{t}^{h}, \quad X_{0}^{h}=0
$$

where $\bar{B}=\left(\bar{B}_{t}^{h}\right)_{t \geq 0}$ is a (standard) Brownian motion (with respect to $\left.\left(\mathcal{F}_{t}^{X^{h}}\right)_{t \geq 0}\right)$.
(c) The process $\pi^{h}=\left(\pi_{t}^{h}\right)_{t \geq 0}$ admits the innovation representation

$$
d \pi_{t}^{h}=\lambda\left(1-\pi_{t}^{h}\right) d t+\frac{r}{\sigma^{2}} \pi_{t}^{h}\left(1-\pi_{t}^{h}\right) \sqrt{h_{t}} d \bar{B}_{t}^{h} \quad \text { with } \pi_{0}^{h}=\pi
$$

Proof. (a) follows by Itô's formula from Bayesian representation of π_{t}^{h}.
(b) Note that

$$
X_{t}^{h}-\int_{0}^{t} r \pi_{s}^{h} d s=\int_{0}^{t} r h_{s}\left[I(\theta \leq s)-\pi_{s}^{h}\right] d s+\int_{0}^{t} \sigma \sqrt{h_{s}} d B_{s} .
$$

The process on the right-hand side is a martingale with $\langle\cdot\rangle_{t}=$ $\int_{0}^{t} \sigma^{2} h_{s} d s$. The existence of innovation process (maybe on the extended probability space) follows from the Dambis-Dubins-Schwarz theorem.
(c) follows from (a) and (b).

§4. VERIFICATION LEMMA

Consider

$$
V^{*}(\pi)=\inf _{\tau} \mathrm{E}_{\pi} G(h, \tau)=\inf _{\tau} \mathrm{E}_{\pi}\left[\left(1-\pi_{\tau}^{h}\right)+a \int_{0}^{\tau} \pi_{t}^{h} d t+b \int_{0}^{\tau} h_{t} d t\right]
$$

The verification lemma gives a possibility to check that a strategy $(\bar{h}, \bar{\tau})$ is optimal:

$$
\bar{V}(\pi) \equiv \mathrm{E}_{\pi} G(\bar{h}, \bar{\tau})=V^{*}(\pi) \quad \text { for all } \pi \in[0,1]
$$

LEMMA 5 [the verification lemma]. Suppose that continuous on $[0,1]$ function $\bar{V}(\pi)$ satisfies the following conditions:
(a) $0 \leq \bar{V}(\pi) \leq 1-\pi$;
(b) for any admissible strategy (h, τ) the process

$$
Y_{t} \equiv \bar{V}\left(\pi_{t}^{h}\right)+a \int_{0}^{t} \pi_{s}^{h} d s+b \int_{0}^{t} h_{s} d s, \quad t \geq 0
$$

is a submartingale (w.r.t. $\left.\left(\mathcal{F}_{t}^{X^{h}}\right)_{t \geq 0}, \mathrm{P}_{\pi}, \pi \in[0,1]\right)$;
(c) for the strategy $(\bar{h}, \bar{\tau})$ the process $\left(\bar{Y}_{t \wedge \bar{\tau}}\right)_{t \geq 0}$ with $\bar{Y}_{t} \equiv$ $\bar{V}\left(\pi_{t}^{\bar{h}}\right)$ is a martingale (w.r.t. $\left(\mathcal{F}_{t}^{X^{h}}\right)_{t \geq 0}, \mathrm{P}_{\pi}, \pi \in[0,1]$);
(d) $\mathrm{E}_{\pi} \bar{\tau}<\infty$;
(e) $\bar{V}\left(\pi \frac{\bar{h}}{\tau}\right)=1-\pi \frac{\bar{h}}{\tau}$.

Then $\bar{V}(\pi)=V^{*}(\pi), \pi \in[0,1]$, and strategy $(\bar{h}, \bar{\tau})$ is optimal. ${ }_{16}$

Proof. Suppose that (h, τ) is a strategy and $\mathrm{E}_{\pi} \tau=\infty$ for some $\pi \in$ $[0,1]$. Then $\mathrm{E}_{\pi} G(h, \tau)=\infty$. Indeed, from the representation

$$
G(h, \tau)=I(\tau<\theta)+a(\tau-\theta)^{+}+b \int_{0}^{\tau} h_{t} d t
$$

we have

$$
\mathrm{E}_{\pi} G(h, \tau) \geq a \mathrm{E}_{\pi}(\tau I(\tau>\theta))-a \mathrm{E}_{\pi} \theta
$$

Since $\mathrm{E}_{\pi} \tau=\mathrm{E}_{\pi} \tau I(\tau>\theta)+\mathrm{E}_{\pi} \tau I(\tau \leq \theta)$ and $\mathrm{E}_{\pi} \tau I(\tau \leq \theta) \leq \mathrm{E}_{\pi} \theta<\infty$, we conclude that $\mathrm{E}_{\pi} \tau=\infty$ implies $\mathrm{E}_{\pi} \tau I(\tau>\theta)=\infty$, and therefore $\mathrm{E}_{\pi} G(h, \tau)=\infty$. But at the same time

$$
\inf _{(h, \tau)} \mathrm{E}_{\pi} G(h, \tau) \leq 1-\pi \leq 1
$$

So, we can exclude the strategies (h, τ) with $\mathrm{E}_{\pi} \tau=\infty$.

By (b) the process $\left(Y_{t}\right)_{t \geq 0}$ is a submartingale. Then by the Optional Sampling Theorem (OST)

$$
\mathrm{E}_{\pi} Y_{\tau \wedge t} \geq \mathrm{E}_{\pi} Y_{0}=\bar{V}(\pi)
$$

From the Fatou Iemma

$$
\mathrm{E}_{\pi} \limsup _{t \rightarrow \infty} Y_{\tau \wedge t} \geq \limsup _{t \rightarrow \infty} \mathrm{E}_{\pi} Y_{\tau \wedge t}
$$

So, by submartingale property of Y and assumption $\mathrm{E}_{\pi} \tau<\infty$ we get

$$
\begin{equation*}
\mathrm{E}_{\pi} Y_{\tau} \geq \mathrm{E}_{\pi} \limsup _{t \rightarrow \infty} Y_{\tau \wedge t} \geq \limsup _{t \rightarrow \infty} \mathrm{E}_{\pi} Y_{\tau \wedge t} \geq \bar{V}(\pi) \tag{1}
\end{equation*}
$$

By (a), we have $1-\pi \geq \bar{V}(\pi)$, so by (1)

$$
\begin{aligned}
\mathrm{E}_{\pi} G(h, \tau) & =\mathrm{E}_{\pi}\left[\left(1-\pi_{\tau}\right)+a \int_{0}^{\tau} \pi_{t} d t+b \int_{0}^{\tau} h_{t} d t\right] \\
& \geq \mathrm{E}_{\pi}\left[\bar{V}\left(\pi_{\tau}\right)+a \int_{0}^{\tau} \pi_{t} d t+b \int_{0}^{\tau} h_{t} d t\right] \\
& =\mathrm{E}_{\pi} Y_{\tau} \geq \bar{V}(\pi) .
\end{aligned}
$$

This implies that

$$
V^{*}(\pi)=\inf _{(h, \tau)} \mathrm{E}_{\pi} G(h, \tau) \geq \bar{V}(\pi)
$$

Now we give a proof of the inequality

$$
V^{*}(\pi) \leq \bar{V}(\pi)
$$

Show first that $\bar{V}(\pi)=\mathrm{E}_{\pi} \bar{Y}_{\bar{\tau}}$. Since $0 \leq \bar{Y}_{t} \leq 1+(a+b) t$ and $\mathrm{E}_{\pi} \bar{\tau}<\infty$, we get by (c) that the process $\left(\bar{Y}_{t \wedge \bar{\tau}}\right)_{t \geq 0}$ is a uniformly integrable martingale. By OST

$$
\mathrm{E}_{\pi} \bar{Y}_{\bar{\tau}}=\mathrm{E}_{\pi} \bar{Y}_{0}=\bar{V}(\pi)
$$

From this property and (e): $\bar{V}\left(\pi_{\bar{T}}^{\bar{h}}\right)=1-\pi_{\bar{T}}^{\bar{h}}$, it follows that

$$
\bar{V}(\pi)=\mathrm{E}_{\pi} \bar{Y}_{\tau}=\mathrm{E}_{\pi}\left[\bar{V}\left(\pi \pi_{\bar{\tau}}^{\bar{h}}\right)+a \int_{0}^{\bar{\tau}} \pi_{s}^{\bar{h}} d s+b \int_{0}^{\bar{\tau}} \bar{h}_{s} d s\right]=\mathrm{E}_{\pi} G(\bar{h}, \bar{\tau}) \geq V^{*}(
$$

Together with inequality $\bar{V}(\tau) \leq V^{*}(\pi)$ this yields that

$$
\bar{V}(\pi)=V^{*}(\pi)
$$

and that $(\bar{h}, \bar{\tau})$ is an optimal strategy.
§5. Here we give some hints how to find a function $\bar{V}(\pi)$ which satisfies the conditions of the verification lemma.

From the representation $Y_{t}=\bar{V}\left(\pi_{t}^{h}\right)+a \int_{0}^{t} \pi_{s}^{h} d s+b \int_{0}^{t} h_{s} d s$ and assumption $\bar{V} \in C^{2}$ we find that

$$
\begin{align*}
d Y_{t}= & d \bar{V}\left(\pi_{t}^{h}\right)+\left(a \pi_{t}^{h}+b h_{t}\right) d t \\
= & {\left[\lambda \bar{V}^{\prime}\left(\pi_{t}^{h}\right)\left(1-\pi_{t}^{h}\right)+\frac{1}{2} \bar{V}^{\prime \prime}\left(\pi_{t}^{h}\right)\left(\frac{r}{\sigma} \pi_{t}^{h}\left(1-\pi_{t}^{h}\right)\right)^{2}+a \pi_{t}^{h}+b h_{t}\right] d t } \\
& +\bar{V}^{\prime}\left(\pi_{t}^{h}\right) \frac{r}{\sigma} \pi_{t}^{h}\left(1-\pi_{t}^{h}\right) \sqrt{h_{t}} d \bar{B}_{t} . \tag{2}
\end{align*}
$$

From here we see that the process $\left(Y_{t}\right)_{t \geq 0}$ is a P_{π}-submartingale for each $\pi \in[0,1]$ if the term in [.] of (2) is nonnegative for any $h_{t}, t \geq 0$. This term is an affine function in h_{t}. So, the claim of nonnegativity is reduced to the claim of nonnegativity of these expressions for $h_{t} \equiv 0$ and $h_{t} \equiv 1$.

So, for all $x \in[0,1]$ for $f(x)=\bar{V}(x)$ we have the following (variational) inequalities:

$$
\begin{array}{r}
\lambda f^{\prime}(x)(1-x)+a x \geq 0, \\
\lambda f^{\prime}(x)(1-x)+\rho x^{2}(1-x)^{2} f^{\prime \prime}(x)+a x+b \geq 0,
\end{array}
$$

where $\rho=r^{2} /\left(2 \sigma^{2}\right)$ is the "signal/noise ratio".
§6. HOW TO FIND STRATEGIES $(\bar{h}, \bar{\tau})$ SATISFYING THE VERIFICATION LEMMA

First of all let us note that it is reasonable to pick out two extreme cases $h=0$ and $h=1$.

FIRST CASE (complete "NONobservability"): we do not make observations ($h \equiv 0, d X_{t}=0$) and π_{t}^{0} (i.e., π_{t}^{h} for $h=0$) is nothing else than a priori probability p_{t} which satisfies the equation

$$
d p_{t}=\lambda\left(1-p_{t}\right) d t
$$

SECOND CASE (complete "observability"): we make observations $\left(h \equiv 1\right.$) and π_{t}^{1} (i.e., π_{t}^{h} for $h=1$) satisfies the stochastic differential equation

$$
d \pi_{t}^{1}=\lambda\left(1-\pi_{t}^{1}\right) d t+\frac{r}{\sigma^{2}} \pi_{t}^{1}\left(1-\pi_{t}^{1}\right)\left(d X_{t}^{1}-r \pi_{t}^{1} d t\right)
$$

THIRD CASE ("NONobservability / observability").

By common sense, in the case of expensive cost of observations it is reasonable to make observations when a priori probability p_{t} (that is, an increasing function $p_{t}=\pi+(1-\pi)\left(1-e^{-\lambda t}\right)$) reaches a relatively big level (denoted by A).

After this it is reasonable to begin observations of process X $\left(d X_{t} \neq 0\right)$ and declare alarm about appearing of a change-point θ if a posteriori probability reaches some high level.

These three cases suggest an idea to search an optimal strategy in the class of strategies (h, τ) defined by two constant levels A and B, $0 \leq A \leq B \leq 1$, whose different values lead to different regimes of observations.

Taking $A \geq 0$, define processes $\pi_{t}=\pi_{t}(A)$ and $X_{t}=X_{t}(A), t \geq 0$, as solutions of the following system of equations with degenerate coefficients:

$$
\begin{align*}
d \pi_{t}= & \left(\lambda\left(1-\pi_{t}\right)-\left(\frac{r}{\sigma}\right)^{2} \pi_{t}^{2}\left(1-\pi_{t}\right)^{2} I\left(\pi_{t}>A\right)\right) d t \\
& +\frac{r}{\sigma^{2}} \pi_{t}\left(1-\pi_{t}\right) d X_{t} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
d X_{t}=I\left(\pi_{t}>A\right)\left[r I(\theta \leq t) d t+\sigma d B_{t}\right] \tag{4}
\end{equation*}
$$

with $\pi_{0}=\pi, X_{0}=0$.

REGIME I (see Case 1). Here $A>0$ and $B=A$. It is the case of the "complete nonobservability". This happens when the cost b for observation is too big.

REGIME II (see Case 2). In this case we assume that $A=0$. It means that we have a case of the "complete observations". We are in Regime II when the cost b for observation is equal to zero.

REGIME III (see Case 3). In this (most interesting) case we assume that

$$
0<A<B \leq 1
$$

From (3) and (4) we see that if $\pi_{t}<A$ then $\pi_{t}=\pi_{t}^{0}\left(=p_{t}\right)$. If $A<\pi_{t}<B$ then we make observations $\left(d X_{t}=r I(t \geq \theta) d t+\sigma d B_{t}\right)$ and $\pi_{t}=\pi_{t}^{1}\left(=\mathrm{P}_{\pi}\left(\theta \leq t \mid \mathcal{F}_{t}^{X}\right)\right)$.

If $\pi_{t}(A)>A$, then $\pi_{t}(A)=\pi_{t}^{1}$; if $\pi_{t}(A)<A$, then $\pi_{t}(A)=p_{t}$. 〈The system (3)-(4) has a weak solution.) At time $\tau=\inf \left\{t \geq 0: \pi_{t} \geq B\right\}$ we declare "alarm" about appearing of a change-point.

We expect ourselves to be within Regime III when the cost b of observation is >0 but not "big".

§ 7. INVESTIGATION OF (PRINCIPAL) REGIME III. STEFAN PROBLEM.

When operating with Regime III, we look for an optimal strategy $\left(h^{*}, \tau^{*}\right)$ in the class of strategies $(\bar{h}, \bar{\tau})$ which have the form

$$
\bar{h}_{t}=I\left(\pi_{t}>\bar{A}\right), \quad \bar{\tau}=\inf \left\{t \geq 0: \pi_{t} \geq \bar{B}\right\}
$$

where π_{t} in defined in (3):

$$
d \pi_{t}=\left[\lambda\left(1-\pi_{t}\right)-\left(\frac{r}{\sigma}\right)^{2} \pi_{t}^{2}\left(1-\pi_{t}\right)^{2} I\left(\pi_{t}>\bar{A}\right)\right] d t+\frac{r}{\sigma^{2}} \pi_{t}\left(1-\pi_{t}\right) d X_{t}
$$

By the verification lemma, we see that for the function $f(x)=\bar{V}(x)$ ($=\mathrm{E}_{x} G(\bar{h}, \bar{\tau})$), in addition to the conditions

$$
\begin{aligned}
& \lambda f^{\prime}(x)(1-x)+a x \geq 0, \\
& \lambda f^{\prime}(x)(1-x)+\rho x^{2}(1-x)^{2} f^{\prime \prime}(x)+a x+b \geq 0 \quad\left(\rho=\frac{r^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

the following conditions should hold:

$$
\begin{align*}
& \lambda f^{\prime}(x)(1-x)+a x=0, \quad x \in(0, \bar{A}), \tag{5}\\
& \lambda f^{\prime}(x)(1-x)+\rho x^{2}(1-x)^{2} f^{\prime \prime}(x)+a x+b=0, \quad x \in(\bar{A}, \bar{B}) . \tag{6}
\end{align*}
$$

Also the condition

$$
f(x)=1-x, \quad x \in[\bar{B}, 1],
$$

should hold.
Let's fix constants \bar{A} and \bar{B} and find solutions of equations (5), (6).

These solutions will contain three unknown constants. In addition to unknown big levels \bar{A} and \bar{B}, we have five unknown constants. Thus, we need five additional conditions.

These conditions will be found from the observations that for the function*

$$
f(x)= \begin{cases}f_{1}(x), & x \in[0, \bar{A}), \\ f_{2}(x), & x \in(\bar{A}, \bar{B}), \\ 1-x, & x \in[\bar{B}, 1]\end{cases}
$$

one can check conditions of the verification lemma.

* The values $f_{1}(0)$ and $f_{2}(\bar{A})$ are defined by continuity: $f_{1}(0)=\lim _{x \downarrow 0} f_{1}(x)$ and $f_{2}(\bar{A})=\lim _{x \downarrow \bar{A}} f_{2}(x)$.

The requirement for $f(x)$ to be continuous makes natural the conditions of "continuous fit":

$$
\begin{equation*}
f_{1}(\bar{A})=f_{2}(\bar{A}), \quad f_{2}(\bar{B})=1-\bar{B}, \tag{7}
\end{equation*}
$$

where $f_{2}(\bar{B})=\lim _{x \uparrow \bar{B}} f_{2}(x)$.
The requirement for the function $f(x)$ to be smooth (which we need, in particular, for application of Itô's formula) leads to the conditions of "smooth fit":

$$
\begin{equation*}
f_{1}^{\prime}(\bar{A})=f_{2}^{\prime}(\bar{A}), \quad f_{2}^{\prime}(\bar{B})=-1 \quad\left(=(1-\bar{B})^{\prime}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}^{\prime \prime}(\bar{A})=f_{2}^{\prime \prime}(\bar{A}) \tag{9}
\end{equation*}
$$

(The values of the derivatives at points \bar{A} and \bar{B} are defined by continuity.)

The problem of finding a function $f(x)$ which satisfies five conditions (5)-(9):

$$
\begin{aligned}
& \lambda f^{\prime}(x)(1-x)+a x=0, \quad x \in(0, \bar{A}), \\
& \lambda f^{\prime}(x)(1-x)+\rho x^{2}(1-x)^{2} f^{\prime \prime}(x)+a x+b=0, \quad x \in(\bar{A}, \bar{B}), \\
& f_{1}(\bar{A})=f_{2}(\bar{A}), \quad f_{2}(\bar{B})=1-\bar{B}, \\
& f_{1}^{\prime}(\bar{A})=f_{2}^{\prime}(\bar{A}), \quad f_{2}^{\prime}(\bar{B})=-1 \quad\left(=(1-\bar{B})^{\prime}\right), \\
& f_{1}^{\prime \prime}(\bar{A})=f_{2}^{\prime \prime}(\bar{A}) .
\end{aligned}
$$

is named

STEFAN PROBLEM

or
problem with moving unknown boundaries.
§ 8. In this section we get the solution of the Stefan problem for Regime III which will be used for finding the optimal strategy $\left(h^{*}, \tau^{*}\right)$.

For simplicity, we shall write A and B instead of \bar{A} and $\bar{B}, 0<$ $A<B \leq 1$. In this problem there are several parameters: $\lambda>0$, $\sigma>0, r \neq 0, a>0$, and $b \geq 0$. Naturally, the decisions about making observations and declaring alarm depend on values of these parameters. Below we shall see that there exists a critical value

$$
b^{*}=\frac{a \lambda \rho}{(a+\lambda)^{2}}
$$

such that

- if $0 \leq b<b^{*}$, then in case $b=0$ we have Regime II (complete observability) and in case $b>0$ we have Regime III (NONobservability/observability);
- if $b \geq b^{*}$, then we have Regime I (complete NONobservability).

Assuming that $0<A<B \leq 1$, consider functions $f_{1}(x)$ and $f_{2}(x)$ as solutions of the equations

$$
\begin{aligned}
\lambda f_{1}(x)(1-x)+a x=0, & x \in(0, A) \\
\lambda f_{2}^{\prime}(x)(1-x)+\rho f_{2}^{\prime \prime}(x) x^{2}(1-x)^{2}+a x+b=0, & x \in(A, B)
\end{aligned}
$$

respectively. If $g_{1}(x)=f_{1}^{\prime}(x)$ and $g_{2}(x)=f_{2}^{\prime}(x)$, then we find that

$$
g_{1}^{\prime}(x)=\frac{\lambda g_{1}(x)-a}{\lambda(1-x)}, \quad g_{2}^{\prime}(x)=\frac{-a x-b-\lambda(1-x) g_{2}(x)}{\rho x^{2}(1-x)^{2}}
$$

From the second-order smooth-fit condition

$$
g_{1}^{\prime}(A)=g_{2}^{\prime}(A) \quad\left(f_{1}^{\prime \prime}(A)=f_{2}^{\prime \prime}(A)\right)
$$

we find the following relationship between $g_{1}(A)$ and $g_{2}(A)$:

$$
\begin{equation*}
\left(\lambda g_{1}(A)-a\right) \rho A^{2}(1-A)=-\lambda(a A+b)-\lambda^{2} g_{2}(A)(1-A) \tag{10}
\end{equation*}
$$

Using the first-order smooth-fit condition

$$
g_{1}(A)=g_{2}(A) \quad\left(f_{1}^{\prime}(A)=f_{2}^{\prime}(A)\right)
$$

we find from (10) that

$$
\begin{equation*}
g_{1}(A)=\frac{a \rho A^{2}(1-A)-\lambda(a A+b)}{(1-A)\left(\lambda^{2}+\lambda \rho A^{2}\right)} \tag{11}
\end{equation*}
$$

From the equation

$$
\left.\lambda g_{1}(x)(1-x)+a x=0, \quad \text { i.e., } \quad \lambda f_{1}^{\prime}(x)(1-x)+a x=0\right)
$$

we find that for $x<A$

$$
\begin{equation*}
g_{1}(x)=-\frac{a x}{\lambda(1-x)} . \tag{12}
\end{equation*}
$$

By continuity this yields that

$$
\begin{equation*}
g_{1}(A)=-\frac{a A}{\lambda(1-A)} . \tag{13}
\end{equation*}
$$

From (11) and (13) we see that the level A should be

$$
\begin{equation*}
A=\sqrt{\frac{\lambda b}{a \rho}} . \tag{14}
\end{equation*}
$$

From here it is clear that for $A>0$ the cost must be positive.

If $b \downarrow 0$, then $A \downarrow 0$ and Regime III \rightarrow Regime II. In Regime III, when $(A, B) \neq \varnothing$, we have condition $A<1$. From concavity of function $f(x)$ and property $f(x)=1-x$ for $x \geq B$ it follows that

$$
g_{1}(A)>-1 .
$$

This inequality and (13) imply that

$$
A<\frac{\lambda}{a+\lambda} .
$$

Combining this with (14), we see that parameters of our problem should be such that

$$
\sqrt{\frac{\lambda b}{a \rho}}<\frac{\lambda}{a+\lambda},
$$

i.e., b must satisfy the inequality

$$
b<b^{*}=\frac{\lambda a \rho}{(a+\lambda)^{2}}
$$

Consider now $x \geq A$. For $g_{2}(x)=f_{2}^{\prime}(x)$, from the basic equation $\lambda f_{2}^{\prime}(x)(1-x)+\rho f_{2}^{\prime \prime}(x) x^{2}(1-x)^{2}+a x+b=0$ we obtain that

$$
\begin{equation*}
\lambda g_{2}(x)(1-x)+\rho g_{2}^{\prime}(x) x^{2}(1-x)^{2}+a x+b=0 \tag{15}
\end{equation*}
$$

Up to a multiplicative constant, the solution of the homogeneous equation $\lambda u(x)(1-x)+\rho u^{\prime}(x) x^{2}(1-x)^{2}=0$ is

$$
u(x)=\left(\frac{1-x}{x}\right)^{\alpha} e^{\alpha / x}, \quad x>0, \quad \text { with } \alpha=\frac{\lambda}{\rho}
$$

Thus the general solution of (15) is given by the formula

$$
\begin{equation*}
g_{2}(x)=K_{2}(x) u(x)-u(x) \int_{A}^{x} \frac{1}{\rho} \frac{a y+b}{y^{2}(1-y)^{2}} \frac{d y}{u(y)} \tag{16}
\end{equation*}
$$

The value of the constant K_{2} is found from the smooth-fit condition $g_{1}(A)=g_{2}(A)$ and the formula $g_{1}(A)=-a A /(\lambda(1-A))$ given above:

$$
K_{2}=-\frac{a}{\lambda} \frac{A}{1-A} \frac{1}{u(A)}=-\frac{a}{\lambda}\left(\frac{A}{1-A}\right)^{1+\alpha} e^{-\alpha / A}
$$

To find B, we note that

$$
\lim _{x \uparrow 1} u(x)=0, \quad \lim _{x \uparrow A} g_{2}(x)=-\infty .
$$

At point A

$$
g_{2}(A)=g_{1}(A)=-\frac{a}{\lambda} \frac{A}{1-A}>-1
$$

Since $g_{2}(x)$ decreases, one can find $B \in(A, 1)$ such that

$$
g_{2}(B)=-1 .
$$

This formula together with the formula $A=\sqrt{\lambda b /(a \rho)}$ obtained above allow us to find functions $f_{1}(x)$ (for $0 \leq x \leq A$) and $f_{2}(x)$ (for $A \leq x \leq B$).
$f_{2}(x)$: For $x \geq A$ we have

$$
f_{2}(x)=\int_{A}^{x} g_{2}(y) d y+C_{2}
$$

Using the condition $f_{2}(B)=1-B$, we find that

$$
C_{2}=(1-B)-\int_{A}^{B} g_{2}(y) d y .
$$

Hence, for $A \leq x \leq B$

$$
f_{2}(x)=(1-B)+\int_{B}^{x} g_{2}(y) d y
$$

where $g_{2}(y)$ was given in (16).
$f_{1}(x)$: Function $f_{1}(x)$ has the form $f_{1}(x)=\int_{A}^{x} g_{1}(y) d y+C_{1}, x<A$, where C_{1} is a constant and $g_{1}(y)=-a y /(\lambda(1-y))$. So,

$$
f_{1}(x)=\frac{a}{\lambda}[x+\log (1-x)]+C_{1}
$$

Condition $f_{1}(A)=f_{2}(A)$ and representations

$$
\begin{aligned}
f_{2}(x)=\int_{A}^{x} g_{2}(y) d y+C_{2}, & x \geq A \\
f_{1}(x)=\int_{A}^{x} g_{1}(y) d y+C_{1}, & x<A
\end{aligned}
$$

imply by continuity that $C_{1}=C_{2}$. So,

$$
f_{1}(x)=\frac{a}{\lambda}[x+\log (1-x)]+(1-B)-\int_{A}^{B} g_{2}(y) d y
$$

In particular, $f_{1}(0)=(1-B)-\int_{A}^{B} g_{2}(y) d y$.
Thus, we can formulate the following theorem.

THEOREM 1 (Regime III \rightarrow Regime II if $b \downarrow 0$). Under assumption $0<b<b^{*}=a \lambda \rho /(a+\lambda)^{2}$ with $\rho=r^{2} /\left(2 \sigma^{2}\right)$ the solution of the Stefan problem with five boundary conditions at the points A and B is given by

$$
f(x)= \begin{cases}f_{1}(x), & x \in[0, A), \\ f_{2}(x), & x \in[A, B), \\ 1-x, & x \in[B, 1]\end{cases}
$$

where

$$
\begin{aligned}
& f_{1}(x)=\frac{a}{\lambda}[x+\log (1-x)]+(1-B)-\int_{A}^{B} g_{2}(y) d y \\
& f_{2}(x)=(1-B)+\int_{B}^{x} g_{2}(y) d y
\end{aligned}
$$

$A=\sqrt{\lambda b /(a \rho)}$ and B is a unique root of the equation $g_{2}(B)=-1$.
(Functions $g_{1}(y)$ and $g_{2}(y)$ are defined in (12) and (16).)

REMARK. If $b \downarrow 0$, then $A \downarrow 0$, i.e., Regime III passes to Regime II of the complete observation. In this case B is a root of the equation

$$
\frac{a}{\rho} \int_{0}^{B} \frac{u(B)}{u(y)} \frac{d y}{y(1-y)^{2}}=1, \quad \text { or } \quad \frac{a}{\rho} \int_{0}^{B} e^{\lambda[H(y)-H(b)] / \rho} \frac{d y}{y(1-y)^{2}}=1
$$

where $H(y)=\log (y /(1-y))-1 / y$.

Now suppose that in Regime III we have $b \uparrow b^{*}=a \lambda \rho /(a+\lambda)^{2}$. Then $A=\sqrt{\lambda b /(a \rho)} \uparrow A^{*}=\lambda /(a+\lambda)$. At the point A^{*}

$$
f_{1}^{\prime}\left(A^{*}\right)=g_{1}\left(A^{*}\right)=-1
$$

From here and the proof of Theorem 1 it follows that $B \downarrow B^{*}=A^{*}$. It demonstrates that in the case $b \geq b^{*}$ (big cost for observations) we have Regime I, i.e., the case with no observations at all.

The corresponding STEFAN PROBLEM:

To find a function $f(x)$ and a level A such that

$$
f(x)=\left\{\begin{array}{llr}
f_{1}(x), & x \in[0, A], & \lambda f_{1}^{\prime}(x)(1-x)+a x=0, \\
1-x, & x \in[A, 1], & f_{1}(A)=1-A,
\end{array} f_{1}^{\prime}(A)=-1 .\right.
$$

The solution is

$$
\begin{equation*}
f_{1}(x)=\frac{a}{\lambda}\left[x+\log (1-x)-\log \frac{a}{a+\lambda}\right] \tag{17}
\end{equation*}
$$

It is evident that

$$
\lim _{x \downarrow 0} f_{1}^{\prime}(x)=0, \quad \lim _{x \uparrow A} f_{1}^{\prime}(x)=-1, \quad f_{1}(x) \leq 1-x, \quad \lim _{x \uparrow A} f_{1}(x)=1-A
$$

Thus, we can formulate the following theorem.

THEOREM 2 (Regime I). If $b \geq b^{*}=a \lambda \rho /(a+\lambda)^{2}$, where $\rho=$ $r^{2} /\left(2 \sigma^{2}\right)$, then the solution of the corresponding Stefan problem (Regime I) is $f_{1}=f_{1}(x)$ given by (17):

$$
f_{1}(x)=\frac{a}{\lambda}\left[x+\log (1-x)-\log \frac{a}{a+\lambda}\right],
$$

and $A=\lambda /(a+\lambda)$.
As the final step we must prove that
the obtained solution $f=f(x)$ of the Stefan problem coincides, in fact, with the function $V^{*}(x)$ of the quickest detection problem.

The proof consists in verification of conditions (a)-(e) of the verification lemma.

[^0]: ** because $h_{t}(\omega)=h_{t}\left(X_{s}(\omega), s \leq t\right)$.

