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§ 1. A WELL-KNOWN QUICKEST DETECTION MODEL:

(a) observations X = (Xt)t≥0 obey the equation

dXt = rI(θ ≤ t) dt+ σ dBt, X0 = 0,

or

Xt =

σBt, t < θ,

r(t− θ) + σBt, t ≥ θ;

(b) Brownian motion B and random variable θ are independent,

usually θ ∼ Exp(π, λ), i.e.,

P(θ = 0) = π, P(θ > t | θ > 0) = e−λt, λ > 0;

(c) parameters σ > 0, r ∈ R, λ > 0 are known; π ∈ [0,1].
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NEW MODEL STOPPING + CONTROL:

observable process Xh = (Xh
t )t≥0 obey the equation

dXh
t (ω) = rht(ω)I(θ(ω) ≤ t) dt+ σ

√
ht(ω) dBt(ω)

with an Ft-measurable ht = ht(ω) ∈ [0,1] (all objects are given

on the filtered probability space (Ω,F , (Ft)t≥0,P)); B and θ are

independent.

The pair (h,Xh) is called a control system. Here

ht(ω) = ht(X
h(ω))

is a synthesis-control, where the mapping (t, x)  ht(x) is Ct =

σ{x : xs, s ≤ t}-measurable.
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The system (h(x), Xh) is called admissible if stochastic differential

equation

dXh
t (ω) = rht(X

h(ω))I(θ(ω) ≤ t) dt+ σ
√
ht(X

h) dBt(ω)

has a solution ∗ .

The admissible pairs (h,X) (where X = Xh) will be called canoni-

cal ∗∗ control system.

∗ weak or strong; the class of weak solutions is larger than the class of strong
solutions; from point of view of real applications, it is better to have strong
solutions; from point of view of distributional analysis of the problem, it is
reasonable to operate with weak solutions.

∗∗ because ht(ω) = ht(Xs(ω), s ≤ t).
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§ 2. To formulate our problem we introduce stopping times τ =

τ(x), x ∈ C = C[0,∞), which play the role of the signal about

appearing of a ‘change-point’ θ = θ(ω).

For the process X = Xh,

τ(X) denotes the composition (τ ◦X)(ω),

i.e., random variable τ(X(ω)).

The set (h,X, τ) plays a key role in our formulation of the quickest

detection problem. The pair (h, τ) is called a strategy.
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With (h, τ) we relate the penalty function

G(h, τ) = I(τ(X) < θ) + a(τ(X)− θ)+ + b
∫ τ(X)

0
ht(X) dt,

where θ is a random variable, θ ∼ Exp(π, λ): P(θ = 0) = π,

P(θ > t | θ > 0) = e−λt.

Denote by Pπ the distribution of X under assumption P(θ = 0) = π.

Note that Law(B |Pπ) does not depend on π.

The value function of the “stopping-control” problem is defined by

V ∗(π) = inf
(h,τ)

EπG(h, τ), π ∈ [0,1].

We want to find V ∗(π) and describe an optimal strategy (h∗, τ∗).
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§ 3. SOME AUXILIARY PROPOSITIONS.

LEMMA 1. Function V ∗ = V ∗(π) is concave.

Proof. By formula of complete probability,

EπG(h, τ) = πEπ

[
τ +

∫ τ
0
ht dt

∣∣∣∣ θ = 0

]

+ (1− π)Eπ

[
I(τ < θ) + a(τ − θ)I(τ > θ) + b

∫ τ
0
ht dt

∣∣∣∣ θ > 0

]
.

None of expectations Eπ( · | θ = 0) and Eπ( · | θ > 0) depends on π.

So, EπG(h, τ) is an affine function of π, and V ∗(π) as infimum of

affine functions is a concave function.
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In the sequel, an important role is played by a priori and a posteriori

probabilities (pt)t≥0 and (πht )t≥0:

pt = Pπ(θ ≤ t) = π + (1− π)(1− e−λt),

πht = Pπ(θ ≤ t | FX
h

t ), where FX
h

t = σ(Xh
s , s ≤ t).

LEMMA 2. For each strategy (h, τ) we have

EπG(h, τ) = Eπ

[
(1− πhτ ) + a

∫ τ
0
πht dt+ b

∫ τ
0
ht dt

]
.
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The lemma follows from

EπI(τ > θ) = Eπ(1− πhτ )

and

Eπ(τ − θ)+ = Eπ(τ − θ)I(τ ≥ θ) = Eπ

∫ ∞
0

I(θ ≤ t < τ) dt

= Eπ

∫ ∞
0

Eπ

[
I(θ ≤ t)I(t < τ) | FX

h

t

]
dt

= Eπ

∫ ∞
0

I(t < τ)Eπ

[
I(θ ≤ t) | FX

h

t

]
dt

= Eπ

∫ τ
0
πht dt,

where we used the fact that {τ ≤ t} ∈ FXh

t .
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The a priori probability (pt)t≥0 solves the equation

dpt = λ(1− pt) dt, t ≥ 0,

with p0 = π.

In the following lemmas we give stochastic differential equations for

πht = P(θ ≤ t | FX
h

t ) and ϕht =
πht

1− πht
.

We can assume that π < 1, since if π = 1, then πht = 1 for all t > 0.
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Let µht,u = Law(Xh
s , s ≤ t | θ = u) (these measures don’t depend on π).

A special role belongs to the measures µht,0 and µht,t (µht,t = µht,u
∀u > t, and also for u =∞ when there is no “disorder” at all).

The Radon–Nikodým derivative Lht =
dµht,0

dµht,t
≡
d(Law(Xh

s , s ≤ t) | θ = 0)

d(Law(Xh
s , s ≤ t) | θ = t)

is given by the formula

Lht = exp

{∫ t
0

r

σ2
dXh

s −
1

2

∫ t
0

r2

σ2
hs ds

}
.

By Itô’s formula, dLht =
r

σ2
Lht dX

h
t . Assuming that π 6= 1, put

ϕht =
πht

1− πht
.
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LEMMA 3. We have

ϕht = ϕh0e
λtLht + λ

∫ t
0
eλ(t−u)L

h
t

Lhu
du, dϕht = λ(1 + ϕht ) dt+

r

σ2
ϕht dX

h
t .

Proof. By Bayes’ formula,

ϕht =
Pπ(θ ≤ t | FXh

t )

Pπ(θ > t | FXh

t )
=
π
dµt,0
dµt,∞

+ (1− π)
∫ t
0 λe

−λu dµt,u
dµt,∞

du

(1− π)
∫∞
t λe−λu

dµt,u
dµt,∞

du

=
π

1− π
eλtLht + λ

∫ t
0
eλ(t−u)L

h
t

Lhu
du,

where we used the formulas
dµt,u

dµt,∞
=

1 for u ≥ t,
Lht /L

h
u for u ≤ t.
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LEMMA 4. (a) The a posteriori probability (πht )t≥0 satisfies the

stochastic differential equation

dπht = λ(1− πht ) dt+
r

σ2
πht (1− πht )

(
dXh

t − rhtπt dt
)
.

(b) The process Xh = (Xh
t )t≥0 admits the innovation represen-

tation

dXh
t = rhtπ

h
t dt+ σ

√
ht dB

h
t , Xh

0 = 0,

where B = (Bht )t≥0 is a (standard) Brownian motion (with

respect to (FXh

t )t≥0).

(c) The process πh = (πht )t≥0 admits the innovation represen-

tation

dπht = λ(1− πht ) dt+
r

σ2
πht (1− πht )

√
ht dB

h
t with πh0 = π.
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Proof. (a) follows by Itô’s formula from Bayesian representation

of πht .

(b) Note that

Xh
t −

∫ t
0
rπhs ds =

∫ t
0
rhs

[
I(θ ≤ s)− πhs

]
ds+

∫ t
0
σ
√
hs dBs.

The process on the right-hand side is a martingale with 〈·〉t =∫ t
0 σ

2hs ds. The existence of innovation process (maybe on the ex-

tended probability space) follows from the Dambis–Dubins–Schwarz

theorem.

(c) follows from (a) and (b).
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§ 4. VERIFICATION LEMMA

Consider

V ∗(π) = inf
τ

EπG(h, τ) = inf
τ

Eπ

[
(1− πhτ ) + a

∫ τ
0
πht dt+ b

∫ τ
0
ht dt

]
.

The verification lemma gives a possibility to check that a strat-

egy (h, τ) is optimal:

V (π) ≡ EπG(h, τ) = V ∗(π) for all π ∈ [0,1]
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LEMMA 5 [the verification lemma]. Suppose that continuous

on [0,1] function V (π) satisfies the following conditions:

(a) 0 ≤ V (π) ≤ 1− π;

(b) for any admissible strategy (h, τ) the process

Yt ≡ V (πht ) + a
∫ t

0
πhs ds+ b

∫ t
0
hs ds, t ≥ 0,

is a submartingale (w.r.t. (FXh

t )t≥0, Pπ, π ∈ [0,1]);

(c) for the strategy (h, τ) the process (Y t∧τ)t≥0 with Y t ≡
V (πht ) is a martingale (w.r.t. (FXh

t )t≥0, Pπ, π ∈ [0,1]);

(d) Eπτ <∞;

(e) V (πhτ ) = 1− πhτ .

Then V (π) = V ∗(π), π ∈ [0,1], and strategy (h, τ) is optimal. 16



Proof. Suppose that (h, τ) is a strategy and Eπτ =∞ for some π ∈
[0,1]. Then EπG(h, τ) =∞. Indeed, from the representation

G(h, τ) = I(τ < θ) + a(τ − θ)+ + b
∫ τ

0
ht dt

we have

EπG(h, τ) ≥ aEπ(τI(τ > θ))− aEπθ.

Since Eπτ = EπτI(τ > θ) + EπτI(τ ≤ θ) and EπτI(τ ≤ θ) ≤ Eπθ < ∞,

we conclude that Eπτ = ∞ implies EπτI(τ > θ) = ∞, and therefore

EπG(h, τ) =∞. But at the same time

inf
(h,τ)

EπG(h, τ) ≤ 1− π ≤ 1.

So, we can exclude the strategies (h, τ) with Eπτ =∞.
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By (b) the process (Yt)t≥0 is a submartingale. Then by the Optional

Sampling Theorem (OST)

EπYτ∧t ≥ EπY0 = V (π).

From the Fatou lemma

Eπ lim sup
t→∞

Yτ∧t ≥ lim sup
t→∞

EπYτ∧t.

So, by submartingale property of Y and assumption Eπτ <∞ we get

EπYτ ≥ Eπ lim sup
t→∞

Yτ∧t ≥ lim sup
t→∞

EπYτ∧t ≥ V (π). (1)
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By (a), we have 1− π ≥ V (π), so by (1)

EπG(h, τ) = Eπ

[
(1− πτ) + a

∫ τ
0
πt dt+ b

∫ τ
0
ht dt

]

≥ Eπ

[
V (πτ) + a

∫ τ
0
πt dt+ b

∫ τ
0
ht dt

]
= EπYτ ≥ V (π).

This implies that

V ∗(π) = inf
(h,τ)

EπG(h, τ) ≥ V (π).
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Now we give a proof of the inequality

V ∗(π) ≤ V (π).

Show first that V (π) = EπY τ . Since 0 ≤ Y t ≤ 1 + (a + b)t and

Eπτ < ∞, we get by (c) that the process (Y t∧τ)t≥0 is a uniformly

integrable martingale. By OST

EπY τ = EπY 0 = V (π).

From this property and (e): V (πhτ ) = 1− πhτ , it follows that

V (π) = EπY τ = Eπ

[
V (πhτ ) + a

∫ τ
0
πhs ds+ b

∫ τ
0
hs ds

]
= EπG(h, τ) ≥ V ∗(π).

Together with inequality V (τ) ≤ V ∗(π) this yields that

V (π) = V ∗(π)

and that (h, τ) is an optimal strategy.
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§ 5. Here we give some hints how to find a function V (π) which

satisfies the conditions of the verification lemma.

From the representation Yt = V (πht ) + a
∫ t
0 π

h
s ds + b

∫ t
0 hs ds and as-

sumption V ∈ C2 we find that

dYt = dV (πht ) + (aπht + bht) dt

=
[
λV
′(πht )(1− πht ) +

1

2
V
′′(πht )

(
r

σ
πht (1− πht )

)2
+ aπht + bht

]
dt

(2)
+ V

′(πht )
r

σ
πht (1− πht )

√
ht dBt.

From here we see that the process (Yt)t≥0 is a Pπ-submartingale for

each π ∈ [0,1] if the term in [·] of (2) is nonnegative for any ht, t ≥ 0.

This term is an affine function in ht. So, the claim of nonnegativity

is reduced to the claim of nonnegativity of these expressions for

ht ≡ 0 and ht ≡ 1.
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So, for all x ∈ [0,1] for f(x) = V (x) we have the following (varia-

tional) inequalities:

λf ′(x)(1− x) + ax ≥ 0,

λf ′(x)(1− x) + ρx2(1− x)2f ′′(x) + ax+ b ≥ 0,

where ρ = r2/(2σ2) is the “signal/noise ratio”.
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§ 6. HOW TO FIND STRATEGIES (h, τ) SATISFYING

THE VERIFICATION LEMMA

First of all let us note that it is reasonable to pick out two extreme
cases h = 0 and h = 1.

FIRST CASE (complete “NONobservability”): we do not make
observations (h ≡ 0, dXt = 0) and π0

t (i.e., πht for h = 0) is nothing
else than a priori probability pt which satisfies the equation

dpt = λ(1− pt) dt.

SECOND CASE (complete “observability”): we make obser-
vations (h ≡ 1) and π1

t (i.e., πht for h = 1) satisfies the stochastic
differential equation

dπ1
t = λ(1− π1

t ) dt+
r

σ2
π1
t (1− π1

t )(dX1
t − rπ1

t dt).

THIRD CASE (“NONobservability / observability”).
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By common sense, in the case of expensive cost of observations

it is reasonable to make observations when a priori probability pt
(that is, an increasing function pt = π + (1 − π)(1 − e−λt)) reaches

a relatively big level (denoted by A).

After this it is reasonable to begin observations of process X

(dXt 6= 0) and declare alarm about appearing of a change-point θ if

a posteriori probability reaches some high level.

These three cases suggest an idea to search an optimal strategy in

the class of strategies (h, τ) defined by two constant levels A and B,

0 ≤ A ≤ B ≤ 1, whose different values lead to different regimes of

observations.
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Taking A ≥ 0, define processes πt = πt(A) and Xt = Xt(A), t ≥ 0,

as solutions of the following system of equations with degenerate

coefficients:

dπt =
(
λ(1− πt)−

(
r

σ

)2
π2
t (1− πt)2I(πt > A)

)
dt

+
r

σ2
πt(1− πt) dXt (3)

and

dXt = I(πt > A)
[
rI(θ ≤ t) dt+ σ dBt

]
(4)

with π0 = π, X0 = 0.

25



REGIME I (see Case 1). Here A > 0 and B = A. It is the case

of the “complete nonobservability”. This happens when the cost b

for observation is too big.

REGIME II (see Case 2). In this case we assume that A = 0. It

means that we have a case of the “complete observations”. We are

in Regime II when the cost b for observation is equal to zero.
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REGIME III (see Case 3). In this (most interesting) case we

assume that

0 < A < B ≤ 1.

From (3) and (4) we see that if πt < A then πt = π0
t (= pt). If

A < πt < B then we make observations (dXt = rI(t ≥ θ) dt + σ dBt)

and πt = π1
t (= Pπ(θ ≤ t | FXt )).

If πt(A) > A, then πt(A) = π1
t ; if πt(A) < A, then πt(A) = pt. 〈The

system (3)–(4) has a weak solution.〉 At time τ = inf{t ≥ 0: πt ≥ B}
we declare “alarm” about appearing of a change-point.

We expect ourselves to be within Regime III when the cost b of

observation is > 0 but not “big”.
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§ 7. INVESTIGATION OF (PRINCIPAL) REGIME III.

STEFAN PROBLEM.

When operating with Regime III, we look for an optimal strat-

egy (h∗, τ∗) in the class of strategies (h, τ) which have the form

ht = I(πt > A), τ = inf{t ≥ 0: πt ≥ B},

where πt in defined in (3):

dπt =
[
λ(1− πt)−

(
r

σ

)2
π2
t (1− πt)2I(πt > A)

]
dt+

r

σ2
πt(1− πt) dXt.

28



By the verification lemma, we see that for the function f(x) = V (x)

(= ExG(h, τ)), in addition to the conditions

λf ′(x)(1− x) + ax ≥ 0,

λf ′(x)(1− x) + ρx2(1− x)2f ′′(x) + ax+ b ≥ 0 (ρ =
r2

2σ2
)

the following conditions should hold:

λf ′(x)(1− x) + ax = 0, x ∈ (0, A), (5)

λf ′(x)(1− x) + ρx2(1− x)2f ′′(x) + ax+ b = 0, x ∈ (A,B). (6)

Also the condition

f(x) = 1− x, x ∈ [B,1],

should hold.

Let’s fix constants A and B and find solutions of equations (5), (6).
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These solutions will contain three unknown constants. In addition

to unknown big levels A and B, we have five unknown constants.

Thus, we need five additional conditions.

These conditions will be found from the observations that for the

function ∗

f(x) =


f1(x), x ∈ [0, A),

f2(x), x ∈ (A,B),

1− x, x ∈ [B,1]

one can check conditions of the verification lemma.

∗ The values f1(0) and f2(A) are defined by continuity: f1(0) = limx↓0 f1(x)
and f2(A) = limx↓A f2(x).
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The requirement for f(x) to be continuous makes natural the con-

ditions of “continuous fit”:

f1(A) = f2(A), f2(B) = 1−B, (7)

where f2(B) = limx↑B f2(x).

The requirement for the function f(x) to be smooth (which we need,

in particular, for application of Itô’s formula) leads to the conditions

of “smooth fit”:

f ′1(A) = f ′2(A), f ′2(B) = −1 (= (1−B)′) (8)

and

f ′′1(A) = f ′′2(A). (9)

(The values of the derivatives at points A and B are defined by

continuity.)
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The problem of finding a function f(x) which satisfies five condi-

tions (5)–(9):

λf ′(x)(1− x) + ax = 0, x ∈ (0, A),

λf ′(x)(1− x) + ρx2(1− x)2f ′′(x) + ax+ b = 0, x ∈ (A,B),

f1(A) = f2(A), f2(B) = 1−B,
f ′1(A) = f ′2(A), f ′2(B) = −1 (= (1−B)′),

f ′′1(A) = f ′′2(A).

is named

STEFAN PROBLEM

or

problem with moving unknown boundaries.
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§ 8. In this section we get the solution of the Stefan problem for
Regime III which will be used for finding the optimal strategy (h∗, τ∗).

For simplicity, we shall write A and B instead of A and B, 0 <

A < B ≤ 1. In this problem there are several parameters: λ > 0,
σ > 0, r 6= 0, a > 0, and b ≥ 0. Naturally, the decisions about
making observations and declaring alarm depend on values of these
parameters. Below we shall see that there exists a critical value

b∗ =
aλρ

(a+ λ)2

such that

• if 0 ≤ b < b∗, then in case b = 0 we have Regime II (complete
observability) and in case b > 0 we have Regime III (NONobserv-
ability/observability);

• if b ≥ b∗, then we have Regime I (complete NONobservability).
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Assuming that 0 < A < B ≤ 1, consider functions f1(x) and f2(x)

as solutions of the equations

λf1(x)(1− x) + ax = 0, x ∈ (0, A),

λf ′2(x)(1− x) + ρf ′′2(x)x2(1− x)2 + ax+ b = 0, x ∈ (A,B),

respectively. If g1(x) = f ′1(x) and g2(x) = f ′2(x), then we find that

g′1(x) =
λg1(x)− a
λ(1− x)

, g′2(x) =
−ax− b− λ(1− x)g2(x)

ρx2(1− x)2
.
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From the second-order smooth-fit condition

g′1(A) = g′2(A) (f ′′1(A) = f ′′2(A))

we find the following relationship between g1(A) and g2(A):

(λg1(A)− a)ρA2(1−A) = −λ(aA+ b)− λ2g2(A)(1−A). (10)

Using the first-order smooth-fit condition

g1(A) = g2(A) (f ′1(A) = f ′2(A)),

we find from (10) that

g1(A) =
aρA2(1−A)− λ(aA+ b)

(1−A)(λ2 + λρA2)
. (11)
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From the equation

λg1(x)(1− x) + ax = 0, (i.e., λf ′1(x)(1− x) + ax = 0)

we find that for x < A

g1(x) = −
ax

λ(1− x)
. (12)

By continuity this yields that

g1(A) = −
aA

λ(1−A)
. (13)

From (11) and (13) we see that the level A should be

A =

√
λb

aρ
. (14)

From here it is clear that for A > 0 the cost must be positive.
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If b ↓ 0, then A ↓ 0 and Regime III → Regime II. In Regime III,

when (A,B) 6= ∅, we have condition A < 1. From concavity of

function f(x) and property f(x) = 1− x for x ≥ B it follows that

g1(A) > −1.

This inequality and (13) imply that

A <
λ

a+ λ
.

Combining this with (14), we see that parameters of our problem

should be such that √
λb

aρ
<

λ

a+ λ
,

i.e., b must satisfy the inequality

b < b∗ =
λaρ

(a+ λ)2
.
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Consider now x ≥ A. For g2(x) = f ′2(x), from the basic equation
λf ′2(x)(1− x) + ρf ′′2(x)x2(1− x)2 + ax+ b = 0 we obtain that

λg2(x)(1− x) + ρg′2(x)x2(1− x)2 + ax+ b = 0. (15)

Up to a multiplicative constant, the solution of the homogeneous
equation λu(x)(1− x) + ρu′(x)x2(1− x)2 = 0 is

u(x) =
(1− x

x

)α
eα/x, x > 0, with α =

λ

ρ
.

Thus the general solution of (15) is given by the formula

g2(x) = K2(x)u(x)− u(x)
∫ x
A

1

ρ

ay + b

y2(1− y)2
dy

u(y)
. (16)

The value of the constant K2 is found from the smooth-fit condition
g1(A) = g2(A) and the formula g1(A) = −aA/(λ(1−A)) given above:

K2 = −
a

λ

A

1−A
1

u(A)
= −

a

λ

( A

1−A

)1+α
e−α/A.
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To find B, we note that

lim
x↑1

u(x) = 0, lim
x↑A

g2(x) = −∞.

At point A

g2(A) = g1(A) = −
a

λ

A

1−A
> −1.

Since g2(x) decreases, one can find B ∈ (A,1) such that

g2(B) = −1.

This formula together with the formula A =
√
λb/(aρ) obtained

above allow us to find functions f1(x) (for 0 ≤ x ≤ A) and f2(x)

(for A ≤ x ≤ B).
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f2(x): For x ≥ A we have

f2(x) =
∫ x
A
g2(y) dy + C2.

Using the condition f2(B) = 1−B, we find that

C2 = (1−B)−
∫ B
A
g2(y) dy.

Hence, for A ≤ x ≤ B

f2(x) = (1−B)+
∫ x
B
g2(y) dy

where g2(y) was given in (16).
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f1(x): Function f1(x) has the form f1(x) =
∫ x
A g1(y) dy+C1, x < A,

where C1 is a constant and g1(y) = −ay/(λ(1− y)). So,

f1(x) =
a

λ
[x+ log(1− x)] + C1.

Condition f1(A) = f2(A) and representations

f2(x) =
∫ x
A
g2(y) dy + C2, x ≥ A,

f1(x) =
∫ x
A
g1(y) dy + C1, x < A,

imply by continuity that C1 = C2. So,

f1(x) =
a

λ
[x+ log(1− x)] + (1−B)−

∫ B
A
g2(y) dy .

In particular, f1(0) = (1−B)−
∫ B
A
g2(y) dy.

Thus, we can formulate the following theorem.
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THEOREM 1 (Regime III → Regime II if b ↓ 0). Under assump-

tion 0 < b < b∗ = aλρ/(a + λ)2 with ρ = r2/(2σ2) the solution of

the Stefan problem with five boundary conditions at the points A

and B is given by

f(x) =


f1(x), x ∈ [0, A),

f2(x), x ∈ [A,B),

1− x, x ∈ [B,1],

where

f1(x) =
a

λ
[x+ log(1− x)] + (1−B)−

∫ B
A
g2(y) dy,

f2(x) = (1−B) +
∫ x
B
g2(y) dy,

A =
√
λb/(aρ) and B is a unique root of the equation g2(B) = −1.

(Functions g1(y) and g2(y) are defined in (12) and (16).)
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REMARK. If b ↓ 0, then A ↓ 0, i.e., Regime III passes to Regime II

of the complete observation. In this case B is a root of the equation

a

ρ

∫ B
0

u(B)

u(y)

dy

y(1− y)2
= 1, or

a

ρ

∫ B
0
eλ[H(y)−H(b)]/ρ dy

y(1− y)2
= 1,

where H(y) = log(y/(1− y))− 1/y.

Now suppose that in Regime III we have b ↑ b∗ = aλρ/(a+λ)2. Then

A =
√
λb/(aρ) ↑ A∗ = λ/(a+ λ). At the point A∗

f ′1(A∗) = g1(A∗) = −1.

From here and the proof of Theorem 1 it follows that B ↓ B∗ = A∗.
It demonstrates that in the case b ≥ b∗ (big cost for observations)

we have Regime I, i.e., the case with no observations at all.
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The corresponding STEFAN PROBLEM:

To find a function f(x) and a level A such that

f(x) =

f1(x), x ∈ [0, A],

1− x, x ∈ [A,1],

λf ′1(x)(1− x) + ax = 0, 0 < x < A,

f1(A) = 1−A, f ′1(A) = −1.

The solution is

f1(x) =
a

λ

[
x+ log(1− x)− log

a

a+ λ

]
. (17)

It is evident that

lim
x↓0

f ′1(x) = 0, lim
x↑A

f ′1(x) = −1, f1(x) ≤ 1−x, lim
x↑A

f1(x) = 1−A.

Thus, we can formulate the following theorem.
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THEOREM 2 (Regime I). If b ≥ b∗ = aλρ/(a + λ)2, where ρ =

r2/(2σ2), then the solution of the corresponding Stefan problem

(Regime I) is f1 = f1(x) given by (17):

f1(x) =
a

λ

[
x+ log(1− x)− log

a

a+ λ

]
,

and A = λ/(a+ λ).

As the final step we must prove that

the obtained solution f = f(x) of the Stefan problem

coincides, in fact, with the function V ∗(x) of the quickest

detection problem.

The proof consists in verification of conditions (a)–(e) of the veri-

fication lemma.

45


