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A QUICKEST DETECTION
PROBLEM

with an expensive cost of observations



1. A WELL-KNOWN QUICKEST DETECTION MODEL.

(a) observations X = (X;);>0 obey the equation

dX; = rI(6 < t)dt + o dBy, Xg =0, |

o By, t <0,
Xy =
r(t—0)+oB;, t>0,

or

(b) Brownian motion B and random variable 6 are independent,
usually 8 ~ Exp(m, A), i.e.,
P(O=0)=mx, P(0>t]0>0)=¢e* X>0;

(c) parameters o >0, r € R, A > 0 are known; 7 € [0, 1].



NEW MODEL STOPPING 4+ CONTROL.:

observable process X" = (X[');>o obey the equation

dXth(w) = rhy(w)I(0(w) <t)dt + oy/ht(w) dBt(w)

with an F;-measurable hy = hy(w) € [0,1] (all objects are given
on the filtered probability space (€2, F, (Ft)t>0,P)); B and 6 are
independent.

The pair (h, X") is called a control system. Here
hi(w) = hy(X"(w))

is a synthesis-control, where the mapping (t,z) ~ h(xz) is C; =
o{x: xs,s < t}-measurable.



The system (h(z), X") is called admissible if stochastic differential
equation

dX{(w) = rhy(X"(W)I(0(w) < t) dt + o/ he(X") dBy(w)

has a solution * .

The admissible pairs (h, X) (where X = X") will be called canoni-
cal ** control system.

weak or strong; the class of weak solutions is larger than the class of strong
solutions; from point of view of real applications, it is better to have strong
solutions; from point of view of distributional analysis of the problem, it is
reasonable to operate with weak solutions.

** because hi(w) = hi(Xs(w),s < t).



§2. To formulate our problem we introduce stopping times 7 =
7(x), * € C = C[0,00), which play the role of the signal about
appearing of a ‘change-point’ 6§ = 0(w).

For the process X = X",

7(X) denotes the composition (70 X)(w),
i.e., random variable 7(X(w)).

The set (h, X, 7) plays a key role in our formulation of the quickest
detection problem. The pair (h,7) is called a strategy.



With (h,7) we relate the penalty function

G(h,7) = I(+(X) < 0) 4+ a(r(X) — 0)F +b /o T Xy ar,

where 6 is a random variable, 6 ~ Exp(mw,A): P = 0) = m,
P(O>t|6>0)=e "

Denote by Pr the distribution of X under assumption P(# = 0) = .
Note that Law(B |P;) does not depend on .

T he value function of the “stopping-control” problem is defined by

Vi(r) = (ihni) E-G(h,T), m € [0, 1].

We want to find V*(x) and describe an optimal strategy (h*, 7).
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§3. SOME AUXILIARY PROPOSITIONS.

LEMMA 1. Function V* = V*(x) is concave.

Proof. By formula of complete probability,
T
ExG(h,7) = 7Ex [T +/O hy dt ' o = o]

—|—(1—W)Ewll(7<9)-I-a(7—9)](7'>9)—|—b/07htdt|9>O].

None of expectations Ex(-|0 = 0) and Ex(-|0 > 0) depends on .
So, ExG(h,7) is an affine function of «, and V*(x) as infimum of
affine functions is a concave function. L]



In the sequel, an important role is played by a priori and a posteriori
probabilities (pt)tZO and (ﬂ'?)tzoi

pr=Pr(0<t) =m4+(1—m)(1—e ),
ol =P <t|FX"), where FX" = o(X!, s < t).

LEMMA 2. For each strategy (h,7) we have

E.G(h, 1) = Ewl(l—wﬁ)—l—a/(;w?dt—l—b/;htdt].




The lemma follows from
Exl(r>0) =Er(1—xP)

and

Ex(r —0)T = Ex(r — 0)I(r > 0) = EW/OOO [0<t<7)dt

oo Xh_
— E”/o EW[I(Q <OI(t<T)|F

o0 Xh:
— EW/O I(t < 7)Ex [1(9 < )| F;

-
= EW/ W?dt,
0

where we used the fact that {r <t} € FX".

dt

dt



The a priori probability (pt);>0 solves the equation
dpt = A(1 — p) dt, t >0,

with po = T.

In the following lemmas we give stochastic differential equations for

=P <t|FX") and o =

We can assume that # < 1, since if m = 1, then w{b = 1 for all ¢t > 0.
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Let H?,u = Law(X?, s <t|0 =u)| (these measures don't depend on =

A special role belongs to the measures |ufo and (uiy = pf
Vu > t, and also for u = co when there is no “disorder” at all).

d d(Law(XP s <) |6 = (
The Radon—Nikodym derivative L,}} = “t}’LO = ( ( Sh’s <t)]
du d(Law(X2, s <t)|0 =1

IS given by the formula

t 1t p2
h __ r h r
Lt —eXp{/O ?dXS —5/0 phSdS}

By Itd's formula, dL? = L? dX,f‘. Assuming that = # 1, put

1 —w?' 11



LEMMA 3. We have

t _\Lh r
o = MLl 4+ /\/O G U)L—Z du,  dpf = AL+ ) dt + 5 ] dX]'

Uu

Proof. By Bayes' formula,

d:“, dpit
Pr(0 < t| FX"Y  Tauor T (1 —m) fohe Mg du

h dpit,co
(pt pr— pr—
(0> 17 () e g
t Lh
S—— eAtL?“ -+ )\/ eA(t_u)—z du,
— T 0 L}

where we used the formulas

duteo | LP/LE for u <t.
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LEMMA 4. (a) The a posteriori probability (7");>q satisfies the
stochastic differential equation

drf = X(1 — 7}) dt + — 7 (1 — 7)) (dX] — rhemy dt).
o

(b) The process X" = (Xth)tzo admits the innovation represen-
tation

dXT = rhynl dt + o/hy dBY, xb =o,
where B = (E?)tzo is a (standard) Brownian motion (with

respect to (]—“I;Xh)tzo).

(c) The process " (wt )+>0 admits the innovation represen-
tation

drnl = A(1 — 7l dt + —wt(l—wt)det with 78 =
O'
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Proof. (a) follows by Itd's formula from Bayesian representation
of 77?.

(b) Note that

t t t
X} —/O rl ds = /O rha|1(0 < s) — =l ds +/O ov/Tis dBs.

The process on the right-hand side is a martingale with (-); =
fé ths ds. The existence of innovation process (maybe on the ex-
tended probability space) follows from the Dambis—Dubins—Schwarz
theorem.

(c) follows from (a) and (b). L]
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§4. VERIFICATION LEMMA

Consider

V*(r) = inf ExG(h, ) = inf Ex [(1 —nl)+a [ b [ dt].

The verification lemma gives a possibility to check that a strat-
egy (h,7) is optimal:

V() =E:G(h,T) = V*(r)

for all = € [0, 1]
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LEMMA 5 [the verification lemma]. Suppose that continuous
on [0, 1] function V(=) satisfies the following conditions:
(@) 0<V(m)<1l-m;

(b) for any admissible strategy (h,7) the process

_ t t
}/}EV(wf)—l—afowgds—l—b/ohsds, £>0,

is a submartingale (w.r.t. (]—“tXh)tZO, Pr, m € [0, 1]);
(c) for the strategy (h,T) the process (Yinz)i>0 With Yy =
V(wf) is @ martingale (w.r.t. (]—‘ffh)tzo, Pr, me€ [0,1]);
(d) Ex7T < oo

(e) V(sk)=1-rh

Then V(r) = V*(x), = € [0,1], and strategy (h,7) is optimal.




Proof. Suppose that (h,7) is a strategy and Ex7 = oo for some 7 €
[0,1]. Then ExG(h,7) = co. Indeed, from the representation

G(h,7) = I(r < 0) +a(7—9)++b/C)Thtdt
we have

E-G(h,7) > abr(7I(7 > 0)) — aE0.

Since Exr = Ex7I(7 > 0) + Ex7I(7 <0) and Ex7I(7 < 0) < E0 < oo,
we conclude that Ex7 = oo implies Ex7I(7 > 6) = oo, and therefore
E-G(h,7) = co. But at the same time

(h,7)

So, we can exclude the strategies (h,7) with Ex7 = oc.
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By (b) the process (Y;);>0 is a submartingale. Then by the Optional
Sampling Theorem (OST)

From the Fatou lemma

ExlimsupY-ar > limsup ExY-a¢.
t—00 t—00

So, by submartingale property of Y and assumption Ex7 < co we get

ExYr > Exlimsup Yra: > limsup ExY, a: > V(n). (1)

t—00 t—00
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By (a), we have 1 — > V(xw), so by (1)
E-G(h,7) = Eﬁl(l — ) +a/0 7rtdt—|—b/0 htdt]

. T T
> EW[V(WT)—I—afo wtdt—l—b/O htdt]
This implies that

Vi(r) = (ihn;c) ExG(h,7) > V(w).
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Now we give a proof of the inequality
V() < V(m).

Show first that V(n) = E;Y=. Since 0 < Y; <14 (a+ b)t and
Ex7T < oo, we get by (c) that the process (Yiar)i>0 is a uniformly
integrable martingale. By OST

From this property and (e): V(7r )=1-— 7r , it follows that

V(r) = ExY, = EW[V(TF )-I—CL/O Tg ds—l—b/ hsds] = ExG(h,T) > V*(

Together with inequality V(7) < V*(x) this yields that
V(r) = V*(n)
and that (h,7) is an optimal strategy. L]
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§&5. Here we give some hints how to find a function V(x) which
satisfies the conditions of the verification lemma.

From the representation Y; = V(a}) + a [§ 7l ds + b [ hsds and as-
sumption V € C? we find that

dY; = dV (n}") + (an]' + bhy) dt
_ 1_ 2
= WV (@M -7 + 5v”(f,-r?) (5 (1 — w?)) + anl + bhy| dt
o

7 T _h h - (2)
+ V (m ); ' (1 — 7' )/ hi dBy.
From here we see that the process (Y;);>0 is a Px-submartingale for
each w € [0,1] if the term in [-] of (2) is nonnegative for any ht, t > 0.
This term is an affine function in hy. S0, the claim of nonnegativity

IS reduced to the claim of nonnegativity of these expressions for
hy =0 and hy = 1.
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So, for all x € [0,1] for f(z) = V(z) we have the following (varia-
tional) inequalities:

Af'(2)(1 —2) + az >0,
M (2)(1 —2) + pz2 (1 — 2)°f"(z) + ax + b > 0,

where p = r2/(202) is the ‘“signal/noise ratio” .
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§6. HOW TO FIND STRATEGIES (h,7) SATISFYING
THE VERIFICATION LEMMA

First of all let us note that it is reasonable to pick out two extreme
cases h=0 and h=1.

FIRST CASE (complete “NONobservability” ): we do not make
observations (h =0, dX; = 0) and = (i.e., w{‘ for h = 0) is nothing
else than a priori probability p; which satisfies the equation

dpy = )\(1 — pt) dt.

SECOND CASE (complete “observability’”): we make obser-
vations (h = 1) and =} (i.e., 7! for h = 1) satisfies the stochastic
differential equation

drf = A1 —nf)dt + 5 7} (1 — 7} )(dX} — i db).
(02

THIRD CASE (‘“NONobservability / observability” ).
23



By common sense, in the case of expensive cost of observations
it is reasonable to make observations when a priori probability p¢
(that is, an increasing function pr = 7 + (1 — 7)(1 — e~ *t)) reaches
a relatively big level (denoted by A).

After this it is reasonable to begin observations of process X
(dX: # 0) and declare alarm about appearing of a change-point 4 if
a posteriori probability reaches some high level.

These three cases suggest an idea to search an optimal strategy in
the class of strategies (h, ) defined by two constant levels A and B,
0 < A< B<1, whose different values lead to different regimes of
observations.
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Taking A > 0, define processes m = m:(A) and Xy = X;(A), t > 0,
as solutions of the following system of equations with degenerate
coefficients:

dm = (A1 = m) - (g)zwt?(l - )21 (m > A) ) dt
+£7Tt(1 — ) dXy (3)
and
dX, = I(m; > A) [rl(@ <D dt+ adBt] (4)

with mg = m, Xg = 0.
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REGIME I (see Case 1). Here A >0 and B = A. It is the case
of the “complete nonobservability” . This happens when the cost b
for observation is too big.

REGIME II (see Case 2). In this case we assume that A = 0. It

means that we have a case of the “complete observations”’. We are
in Regime II when the cost b for observation is equal to zero.
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REGIME 1III (see Case 3). In this (most interesting) case we
assume that

O<A<B<LL1

From (3) and (4) we see that if m; < A then 7 = 7P (= p). If
A < m < B then we make observations (dX; = rI(t > 0) dt + o dBy)
and m = 7} (= PA(0 < t|FX)).

If m(A) > A, then m(A) = 7rtl; if m:(A) < A, then m(A) = pt. (The
system (3)—(4) has a weak solution.) At time r = inf{t > 0: n; > B}

we declare “alarm’” about appearing of a change-point.

We expect ourselves to be within Regime III when the cost b of
observation is > 0 but not "big".

27



§7. INVESTIGATION OF (PRINCIPAL) REGIME III.
STEFAN PROBLEM.

When operating with Regime III, we |look for an optimal strat-
egy (h*,7*) in the class of strategies (h,7) which have the form

Et:I(ﬂ't>Z), ?:inf{tZO:thE},
where m; in defined in (3):

r

2 -
dm = [)\(1 — ) — (;) 71'152(1 — ﬂ't)zf(ﬂ't > A)| dt + éﬂ-t(l — ) dX+.
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By the verification lemma, we see that for the function f(z) = V(z)
(= EzG(h,7)), in addition to the conditions

Af(z)(1 —x) +az >0,

2
A/ (@) (1 — @) + pe*(1 — 2)2f (@) +az +5>0  (p=1
o
the following conditions should hold:
Af(2)(1 —x) +ax =0, zec(0,A), (5)

Af () (1 —x) + pa:z(l — a:)zf”(w) +axr+b=0, zxz€ (A B). (6)
Also the condition

f(x):]-_x7 xE[E,l],
should hold.

Let's fix constants A and B and find solutions of equations (5), (6).
29



T hese solutions will contain three unknown constants. In addition
to unknown big levels A and B, we have five unknown constants.
Thus, we need five additional conditions.

These conditions will be found from the observations that for the
function *

(f1(z), =z €[0,4),
f(CU) = 9 fQ(x)a S (275)7
11—z, z€l[B,1]

one can check conditions of the verification lemma.

* The values f1(0) and f2(A) are defined by continuity: f1(0) = lim,o f1(x)
and fQ(A) = |imxizf2(£lj).
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The requirement for f(x) to be continuous makes natural the con-
ditions of “continuous fit":

f1(A) = f2(A), f2(B) =1-B, (7)
where fo(B) = lim_.5 fo(x).

The requirement for the function f(xz) to be smooth (which we need,
in particular, for application of Itd's formula) leads to the conditions
of “smooth fit":

f1(A) = f(4), f2(B)y=-1 (=(1-B)) (8)

and

f1(4) = f2(4). (9)

(The values of the derivatives at points A and B are defined by
continuity.)
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The problem of finding a function f(x) which satisfies five condi-
tions (5)—(9):

Al(2)(1—2)4+ax =0, =z€(0,A),

M ()1 —2)+ pz2(1l —2)2f(z) +ax+b=0, zec (A4, B),
f1(A) = f2(A), fo(B) =1-B,

f1(A) = f2(A),  f(B)=-1 (=Q-B)),

f1(A) = f3(4).

IS named

STEFAN PROBLEM
or
problem with moving unknown boundaries.
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§ 8. In this section we get the solution of the Stefan problem for
Regime III which will be used for finding the optimal strategy (h*, 7).

For simplicity, we shall write A and B instead of A and B, 0 <
A < B < 1. In this problem there are several parameters: A > O,
o >0, r#%*0, a>0, and b > 0. Naturally, the decisions about
making observations and declaring alarm depend on values of these
parameters. Below we shall see that there exists a critical value

aip

Y = a2

such that

e if 0 <b<b* then in case b = 0 we have Regime II (complete
observability) and in case b > 0 we have Regime III (NONobserv-
ability /observability);

e ifb>0d* then we have Regime I (complete NONobservability).
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Assuming that 0 < A < B < 1, consider functions f1(x) and fo(x)
as solutions of the equations

Af1(2)(1 —2x) +ax =0, z € (0,A4),
Afh(x)(1 — ) + pfE ()2 (1 — )% 4+ ax + b =0, z € (A, B),

respectively. If g1(x) = f1(x) and go(z) = f5(z), then we find that

Agl(m) —a / (.CU)

—ax —b— A1 —x)go(x)
ANl—gz) 2 |

pz2(1 — x)?

g1(z) =
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From the second-order smooth-fit condition

91(A) = g5(A) (f1(A) = f3(A))
we find the following relationship between g1 (A) and g>(A):

(Ag1(A) —a)pA2%(1 — A) = —A(aA +b) — X2g>(A)(1 — A).  (10)

Using the first-order smooth-fit condition
g1(A) = g2(A) (f1(4) = f5(A)),
we find from (10) that

apA?(1 —A) — A(aA +b)
(1 - A)(A2 + ApA2)

91(A) = (11)
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From the equation

Ag1(2)(1 —z) +azx =0, (i.e., Afi(z)(1 —z)+ ax=0)
we find that for x < A

ax

= — : 12
1@ =570 (12)
By continuity this yields that
aA
A) = — : 13
1) =311 (13)
From (11) and (13) we see that the level A should be
Ab
A= /—. (14)
ap

From here it is clear that for A > 0 the cost must be positive.
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If b |/ 0, then A | O and Regime III — Regime II. In Regime III,
when (A,B) #= @, we have condition A < 1. From concavity of
function f(x) and property f(x) =1 — x for x > B it follows that

gl(A) > —1.
This inequality and (13) imply that

A
a-+ M\
Combining this with (14), we see that parameters of our problem

should be such that
b < A
ap a4+ N

i.e., b must satisfy the inequality

AL

Aap
(a+X)?

b< b=
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Consider now z > A. For gx(z) = f5(z), from the basic equation
AA(2)(1 — z) + pfy(z)z?(1 — )2 + ax + b = 0 we obtain that
)\92(:13)(1—3:)—|—pg/2(a:)562(1—:1:)2+a:1:—|-b=0. (15)

Up to a multiplicative constant, the solution of the homogeneous
equation Au(z)(1 —z) + pu/(2)22(1 —2)2 =0 is

1l —x\« A

u(x) = ( ) e/, r >0, witha==

T p

Thus the general solution of (15) is given by the formula
1 ay—+b dy

g2(x) = Ko(x)u(x) — u(x) — .

A py3(1—y)? u(y)

T he value of the constant K5 is found from the smooth-fit condition
g1(A) = g>(A) and the formula g1 (A) = —aA/(A(1—A)) given above:

(16)

a A 1 a( A )1+ae—a/A.

Ky = —— __Z
Al — Au(A) Al — A
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To find B, we note that

lim = 0, lim = —00.
lim u(x) lim ga(x) = oo
At point A
a A

g2(A) = g1(A) = —— > —1.

Al1-—A
Since g>(x) decreases, one can find B € (A,1) such that

g2(B) = —1.

This formula together with the formula A = \/)\b/(ap) obtained
above allow us to find functions fi1(x) (for 0 < x < A) and fo(x)
(for A<z < B).
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fa(x): For x > A we have

xr
f22) = [ 92() dy + Ca.
Using the condition f»(B) = 1 — B, we find that

B
Co=01-B)~ [ o)y

Hence, for A<z < B

fa(x) = (1—B)+/;gz(y) dy \

where g>(y) was given in (16).
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fi(x): Function fi(x) has the form fi1(z) = [191(y)dy+C1, = < A,
where C7 is a constant and ¢1(y) = —ay/(A(1 —y)). So,
f1(@) = Sz +log(1 - )] + 1.
Condition f1(A) = f»(A) and representations
P@) = [ e@dy+Co 224,

@ = [a@d+c,  a<a

imply by continuity that C1 = C». So,

fi(e) = 2e 1001~ + 1~ B) - [ 2y |

B
In particular, f1(0) = (1 - B) — /A go(y) dy.

Thus, we can formulate the following theorem.
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THEOREM 1 (Regime III — Regime II if b | 0). Under assump-
tion 0 < b < b* = aXp/(a 4+ N2 with p = r2/(202) the solution of
the Stefan problem with five boundary conditions at the points A
and B is given by

(f1(z), = €[0,A),

f(aj) = 9 fQ(x)a S A7B>7
11—z, =xz¢€|[B,1],

where
a B
@) =l +l0g(1—2)]+ 1 - B) = [ () dy.
foa) = (1= B)+ [ g2() dy,

A= \/)\b/(ap) and B is a unique root of the equation ¢g>(B) = —1.

(Functions ¢g1(y) and g>(y) are defined in (12) and (16).)
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REMARK. If b| O, then A | O, i.e., Regime IIl passes to Regime II
of the complete observation. In this case B is a root of the equation

a (Bu(B) dy a (B @) -H®)/p W
had 1 _ ) P =1
p/ o /0 ’ y(1—y)2

o u(y) yA—y)2 o
where H(y) = log(y/(1 —y)) — 1/y.

Now suppose that in Regime III we have b 1 b* = a\p/(a+X)2. Then
A= \/\b/(ap) T A* = A/(a+A). At the point A*

f1(A*) = g1(A*) = —1.

From here and the proof of Theorem 1 it follows that B | B* = A*.
It demonstrates that in the case b > b* (big cost for observations)
we have Regime I, i.e., the case with no observations at all.
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The corresponding STEFAN PROBLEM:

To find a function f(x) and a level A such that

(2) = f1(z), =z €[0,A4], Af1(x)(1 —2)4+ar =0, 0<z<A,
1—z, x€][A 1], f1A)=1-A, fi(A)=-1.

T he solution is

fi(z) = % r +109(1 —x) — log

It is evident that

imfix) =0, mfA@)=-1 f@<l-z lmAE) =1-A

a

a-+ N

(17)

Thus, we can formulate the following theorem.
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THEOREM 2 (Regime I). If b > b* = a)\p/(a + \)2, where p =
r2/(202), then the solution of the corresponding Stefan problem
(Regime 1) is f1 = f1(x) given by (17):

fi(z) = % z +log(1l —z) —log

and A= \/(a+ )).

a

a-+ M\’

As the final step we must prove that

the obtained solution f = f(x) of the Stefan problem
coincides, in fact, with the function V*(z) of the quickest
detection problem.

The proof consists in verification of conditions (a)—(e) of the veri-
fication lemma.
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