The double stopping problem

Sequential solution of the problem

Examples 00

A double optimal stopping of marked renewal process

Krzysztof Szajowski

Institute of Mathematics & Computer Science Wroclaw University of Technology Wrocław, Poland

International Conference "Stochastic Optimal Stopping" September 12-16, Petrozavodsk, Russia

Wrocław University of Technology

• • = • • = • =

= 200

Sequential solution of the problem

= 200

Plan of the presentation

The basic problem

- Formulation
- The history
- 2 The double stopping problem
 - Formulation
 - The optimization problem
 - The game approach
- 3 Sequential solution of the problem
 - Construction of the second stopping moment
 - Construction of the first stopping moment
- 4 Examples
 - Example 1
 - Example 2

The basic problem ●○○	The double stopping problem	Sequential solution of the problem	Examples 00
Formulation			
Formulation			

K - the number of fishes in a lake; T_1, T_2, \ldots, T_n - the capture times; X_1, X_2, \ldots, X_n - the weights of fishes; N(t) - the number of fishes caught by time t; M(t) - total weight of fishes caught by time t;

$$M(t) = \sum_{i=0}^{N(t)} X_i$$

Z(t) – the payoff for stopping at time t;

al:
$$EZ(au^*) = \sup_{ au \in \mathcal{T}} EZ(au)$$

Go

Sequential solution of the problem

The history

The history of the basic problem

- [Starr(1974)]
 - $\{T_i\}_{i=0}^{K}$ i.i.d random variables ~ $\mathcal{E}(\lambda)$;
 - Z(t) = N(t) ct;
- [Starr and Woodroofe(1974)]
 - $\{T_i\}_{i=0}^{K}$ i.i.d random variables ~ F(t);
 - F(t) is continuous and has DFR^(*) or IFR^(**);
 - Z(t) = N(t) ct;
- [Starr et al.(1976)Starr, Wardrop, and Woodroofe]
 - $\{T_i\}_{i=0}^{K}$ i.i.d random variables ~ F(t);
 - F(t) is continuous and has DFR;
 - Z(t) = g(N(t)) c(t), where g concave and c convex;

 $\mathsf{DFR}^{(*)}$ – Decreasing Failure Rate (i.e. $d(x) = \frac{f(x)}{F(x)}$ decreases) $\mathsf{IFR}^{(**)}$ – Increasing Failure Rate

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

The history

The history of the basic problem

- [Kramer and Starr(1990)], (see also [Fakhre-Zakeri and Slud(1996), Dalal and Mallows(1988)])
 - $\{(X_i, T_i)\}_{i=0}^{K}$ i.i.d random variables ~ F(x, t);
 - *T_i* may be dependent on *X_i*;
 - Z(t) = M(t) c(t), where c convex;
- [Ferguson(1997)]
 - $K \sim G(k)$
 - $\{(X_i, T_i)\}_{i=0}^{K}$ i.i.d random variables $\sim F(x, t)$
 - Z(t) = M(t) c(t), where c increasing
- [Karpowicz and Szajowski(2008)], [Karpowicz(2009)]
 - $\{(X_{i,n}, T_{i,n})\}_{n=0}^{\infty}$ r.vs; X and T are independent;
 - $X_{i,n}$ are i.i.d. r.v. having $H_i(x)$;

•
$$T_{i,n+1} - T_{i,n} \sim F_i(s);$$

- $Z(s,t) = w(M_s, s, M_t^s, t).$
- $EZ(\tau_1^*, \tau_2^*) = \sup_{\tau_1 \in \mathcal{T}} \sup_{\tau_2 \in \mathcal{T}^{\tau_1}} EZ(\tau_1, \tau_2).$

▲冊▶ ▲■▶ ▲■▶ ■目 のQ@

The double stopping problem

Sequential solution of the problem

Examples 00

= 200

Formulation

Definitions and notations

 t_0 – finite horizon

FIRST 2 METHODS

- fishes weights
- counting process
- the capture times
- the type
- which are *i*-th type
- period between successive captures
- utility function
- cost function

The double stopping probler

Sequential solution of the problem

Examples 00

Formulation

Definitions and notations

- t_0 finite horizon
- fishes weights
- counting process
- the capture times
- the type
- which are *i*-th type
- period between successive captures
- utility function
- cost function

- FIRST 2 METHODS
 - $\{X_{i,j}\}_{i\in\{1,2\}, j=0}^{\infty}$
 - $\overrightarrow{N}(t) = (N_1(t), N_2(t))$
- $\{(T_n,\mathfrak{z}_n)\}_{n=0}^{\infty}$,
- where $\mathfrak{z}_n \in \{1,2\}$
- $n_{i,0} = 0, n_{i,k+1} = \inf\{n > n_{i,k} : \mathfrak{z}_n = i\}$

* E • * E • E

= 200

The double stopping problem

Sequential solution of the problem

Examples 00

Formulation

Definitions and notations

- t_0 finite horizon
- fishes weights
- counting process
- the capture times
- the type
- which are *i*-th type
- period between successive captures
- utility function
- cost function

- FIRST 2 METHODS
 - $\{X_{i,j}\}_{i\in\{1,2\}, j=0}^{\infty}$
 - $\overrightarrow{N}(t) = (N_1(t), N_2(t))$
- $\{(T_n,\mathfrak{z}_n)\}_{n=0}^{\infty}$,
- where $\mathfrak{z}_n \in \{1,2\}$
- $n_{i,0} = 0, n_{i,k+1} =$ inf{ $n > n_{i,k} : \mathfrak{z}_n = i$ }
- $T_{i,k} = T_{n_{i,k}}$

000000000

Sequential solution of the problem

Formulation

Definitions and notations

- t_0 finite horizon
- fishes weights
- counting process
- the capture times
- the type
- which are *i*-th type
- period between successive captures
- utility function
- cost function

FIRST 2 METHODS

- $\{X_{i,j}\}_{i \in \{1,2\}, i=0}^{\infty}$
- $\overrightarrow{N}(t) = (N_1(t), N_2(t))$
- $\{(T_n,\mathfrak{z}_n)\}_{n=0}^{\infty}$
- where $\mathfrak{z}_n \in \{1, 2\}$
- $n_{i,0} = 0, n_{i,k+1} =$ $\inf\{n > n_{i,k} : \mathfrak{z}_n = i\}$
- $T_{i,k} = T_{n_{i,k}}$ $S_{i,n} = T_{i,n} - T_{i,n-1}$
- $g_{1,i}(\cdot), g_1(\cdot)$ • $c_{1,i}(\cdot)$

THIRD METHOD

周 > 《 문 > 《 문 > _ 문 문

The double stopping problem

Sequential solution of the problem

Examples 00

Formulation

Definitions and notations

- t_0 finite horizon
- fishes weights
- counting process
- the capture times
- the type
- which are *i*-th type
- period between successive captures
- utility function
- cost function

- FIRST 2 METHODS
 - $\{X_{i,j}\}_{i \in \{1,2\}, j=0}^{\infty}$
 - $\overrightarrow{N}(t) = (N_1(t), N_2(t))$
 - $\{(T_n,\mathfrak{z}_n)\}_{n=0}^{\infty}$,
 - where $\mathfrak{z}_n \in \{1,2\}$
 - $n_{i,0} = 0, n_{i,k+1} =$ inf $\{n > n_{i,k} : \mathfrak{z}_n = i\}$
 - $T_{i,k} = T_{n_{i,k}}$ $S_{i,n} = T_{i,n} - T_{i,n-1}$
 - $g_{1,i}(\cdot), g_1(\cdot)$ • $c_{1,i}(\cdot)$ • $g_2(\cdot)$ • $g_2(\cdot)$ • $g_2(\cdot)$ • $g_2(\cdot)$ • $g_2(\cdot)$

- \xrightarrow{s} THIRD METHOD
 - X_{3,0}, X_{3,1}, X_{3,2},...
 - $N_3(t)$
 - T_{3,0}, T_{3,1}, T_{3,2}...

• $S_{3n} = T_{3n} - T_{3n-1}$

Sequential solution of the problem

Examples 00

Formulation

Assumptions for double stopping problem

Assumptions:

For $i \in \{1, 2\}$

- The utility functions $g_i, g_{i,j} : [0, \infty)^3 \to [0, W_i]$ are continuous and bounded by W_i .
- ② The cost functions $c_i, c_{i,j} : [0, t_0] \rightarrow [0, C_i]$ are continuous, bounded by C_i and differentiable.
- {X_{i,j}}[∞]_{i∈{1,2,3}, j=0} are i.i.d. random variables with known distribution function H_i(x).
- {S_{i,n}}[∞]_{n=0} are i.i.d. random variables for fixed i ∈ {1,2,3} with known, continuous distribution functions F_i(s), such that F_i(t₀) < 1.
- So The point processes N_i(t) are independent on the sequence of weights {X_{i,n}}[∞]_{n=0}.

Sequential solution of the problem

Examples 00

A = A = A = A = A = A = A

Formulation

Description of the considered processes

Total weight of fishes caught by time t, if the change of the position took place at the time s:

$$M_t^s = \begin{cases} \sum_{i=1}^2 \sum_{n=1}^{N_i(s \wedge t)} X_{i,n} + \sum_{n=1}^{N_3((t-s)^+)} X_{3,n}, & \text{for } s \le t, \\ \sum_{i=1}^2 \sum_{n=1}^{N_i(t)} X_{i,n} & \text{for } s > t. \end{cases}$$

Notations:

$$\begin{split} & M_{i,t} = \sum_{n=1}^{N_i(t)} X_{i,n}, \ M_t = \sum_{i=1}^2 M_{i,t}, \ \overrightarrow{M}_t = (M_{1,t}, M_{2,t}), \\ & M_{i,n} := M_{i,T_n}, \ M_{3,n}^s := M_{i,T_{3,n}}^s \end{split}$$

Let us fix:

$$T_{3,0} = s, X_{3,0} = M_s$$

The basic problem	The double stopping problem	Sequential solution of the problem	Examples 00
Formulation			

The payoffs

The payoff for stopping at time t, if the change of the techniques took place at time s just after the catching by method i is

Payoff when change is on *i*th method $W_i(s,t) = \mathbb{I}_{\{t < s \le t_0\}} w_1(\overrightarrow{M}_t, i, t) + \mathbb{I}_{\{s \le t \le t_0\}} w_2(\overrightarrow{M}_s, i, s, M_t^s, t) - \mathbb{I}_{\{t_0 < t\}} C$

where

$$\begin{array}{rcl} w_1(\vec{m},i,t) &=& g_1(\vec{m},i,t)-c_1(t), \\ w_2(\vec{m},i,s,\vec{m},t) &=& w_1(\vec{m},i,s)+g_{2,i}(\vec{m},s,\vec{m},t)-c_2(t-s), \\ C &=& C_1+C_2. \end{array}$$

向 ト イヨト イヨト ヨヨ つくつ

The basic problem	The double stopping problem	Sequential solution of the problem	Examples 00
Formulation			

The payoffs

The payoff for stopping at time t, if the change of the techniques took place at time s just after the catching by method i is

Payoff when change is on *i*th method $W_i(s,t) = \mathbb{I}_{\{t < s \le t_0\}} w_1(\overrightarrow{M}_t, i, t) + \mathbb{I}_{\{s \le t \le t_0\}} w_2(\overrightarrow{M}_s, i, s, M_t^s, t) - \mathbb{I}_{\{t_0 < t\}} C$

where

$$\begin{array}{rcl} w_1(\vec{m},i,t) &=& g_1(\vec{m},i,t)-c_1(t), \\ w_2(\vec{m},i,s,\vec{m},t) &=& w_1(\vec{m},i,s)+g_{2,i}(\vec{m},s,\vec{m},t)-c_2(t-s), \\ C &=& C_1+C_2. \end{array}$$

For the global optimization problem, the closer to those problems have been formulated and solved by [Karpowicz(2009)]

$$Z(s,t) = W_{\mathfrak{z}_{N(s)}} = \begin{cases} w_1(\overrightarrow{M}_t,\mathfrak{z}_{N(t)},t) - c_1(t) & \text{if } t < s \le t_0, \\ w_2(\overrightarrow{M}_s,\mathfrak{z}_{N(s)},s,M_t^s,t) & \text{if } s \le t \le t_0, \\ -C & \text{if } t_0 < t, \end{cases}$$

Q

The double stopping problem

Sequential solution of the problem

Examples 00

EL OQA

• • = • • = •

Formulation

Information of the decision maker and his strategies

Definition

$$\mathcal{F}_{t} = \mathcal{F}_{t}^{\{1,2\}} = \sigma(X_{0}, T_{0}, \mathfrak{z}_{0}, X_{1}, T_{1}, \mathfrak{z}_{1}, \dots, X_{N(t)}, T_{N(t)}, \mathfrak{z}_{N(t)});$$

$$\mathcal{F}_{s,t} = \sigma(\mathcal{F}_{s}^{\{1,2\}}, X_{3,0}, T_{3,0}, \dots, X_{3,N_{3}((t-s)^{+})}, T_{3,N_{3}((t-s)^{+})});$$

Extra notations:

$$\mathcal{F}_{i,n} := \mathcal{F}_{T_{i,n}}, \ \mathcal{F}_n := \mathcal{F}_{T_n}, \ \mathcal{F}_n^s = \mathcal{F}_{s, T_{3,n}} \text{ and } \mathcal{F}_{s,s} = \mathcal{F}_s$$

The double stopping problem

Sequential solution of the problem

Examples 00

Formulation

Information of the decision maker and his strategies

Definition

$$\mathcal{F}_{t} = \mathcal{F}_{t}^{\{1,2\}} = \sigma(X_{0}, T_{0}, \mathfrak{z}_{0}, X_{1}, T_{1}, \mathfrak{z}_{1}, \dots, X_{N(t)}, T_{N(t)}, \mathfrak{z}_{N(t)});$$

$$\mathcal{F}_{s,t} = \sigma(\mathcal{F}_{s}^{\{1,2\}}, X_{3,0}, T_{3,0}, \dots, X_{3,N_{3}((t-s)^{+})}, T_{3,N_{3}((t-s)^{+})});$$

Extra notations:

$$\mathcal{F}_{i,n} := \mathcal{F}_{T_{i,n}}, \ \mathcal{F}_n := \mathcal{F}_{T_n}, \ \mathcal{F}_n^s = \mathcal{F}_{s,T_{3,n}} \ \text{and} \ \mathcal{F}_{s,s} = \mathcal{F}_s$$

Definition

 $\mathcal{M}(\mathcal{F}_n)$ $(\mathcal{M}(\mathcal{F}_{i,n}))$ - the set of nonegative and \mathcal{F}_n $(\mathcal{F}_{i,n})$ -measurable random variables.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わへゆ

The double stopping problem

Sequential solution of the problem

Examples 00

Formulation

Information of the decision maker and his strategies

Definition

$$\mathcal{F}_{t} = \mathcal{F}_{t}^{\{1,2\}} = \sigma(X_{0}, T_{0}, \mathfrak{z}_{0}, X_{1}, T_{1}, \mathfrak{z}_{1}, \dots, X_{N(t)}, T_{N(t)}, \mathfrak{z}_{N(t)});$$

$$\mathcal{F}_{s,t} = \sigma(\mathcal{F}_{s}^{\{1,2\}}, X_{3,0}, T_{3,0}, \dots, X_{3,N_{3}((t-s)^{+})}, T_{3,N_{3}((t-s)^{+})});$$

Extra notations:

$$\mathcal{F}_{i,n} := \mathcal{F}_{T_{i,n}}, \ \mathcal{F}_n := \mathcal{F}_{T_n}, \ \mathcal{F}_n^s = \mathcal{F}_{s,T_{3,n}} \ \text{and} \ \mathcal{F}_{s,s} = \mathcal{F}_s$$

Definition

 $\mathcal{M}(\mathcal{F}_n)$ $(\mathcal{M}(\mathcal{F}_{i,n}))$ - the set of nonegative and \mathcal{F}_n $(\mathcal{F}_{i,n})$ -measurable random variables.

Definition

- \mathcal{T} the set of stopping times with respect to the σ -field \mathcal{F}_t ;
- \mathcal{T}^{s} the set of stopping times with respect to the σ -field $\mathcal{F}_{s,t}$;

Sequential solution of the problem

Examples 00

Formulation

Strategies and goals

Definition

For
$$i \in \{1, 2\}$$
, $i \neq j$, $n \in \mathbb{N}$ and $n < K$ define:
 $T_{n,K} = \{\tau \in \mathcal{T} : \tau \ge 0, T_n \le \tau \le T_K\},$
 $T_{i,n,K} = \{\tau \in \mathcal{T} : \tau \ge 0, T_{i,n} \le \tau \le T_K\};$
 $T_{n,K}^s = \{\tau \in \mathcal{T}^s : \tau \ge s, T_{3,n} \le \tau \le T_{3,K}\};$
 $T_i = \{\tau \in \mathcal{T} : T_{j,N_j(\tau)} \le T_{i,N_i(\tau)} \le \tau \le T_{i,N_i(\tau)+1} \land T_{j,N_j(\tau)+1}\}$

Goal-the global approach

Find two optimal stopping times τ_1^* and τ_2^* in order to maximize the payoff:

$$\mathsf{E}Z(\tau_1^*,\tau_2^*) = \sup_{\tau_1\in\mathcal{T}}\sup_{\tau_2\in\mathcal{T}^{\tau_1}}\mathsf{E}Z(\tau_1,\tau_2),$$

where $\tau_1^* < \tau_2^* \le t_0$ τ_1^* – the moment of stopping the separate methods; τ_2^* – the moment of stopping the fishing.

The double stopping problem

Sequential solution of the problem

Examples 00

The optimization problem

The double stopping problem

Optimization violated by technique chosen

Find two optimal stopping times $\tau_1^* \in \mathcal{T}_i$ and $\tau_2^* \in \mathcal{T}_1^{\tau_1^*}$ in order to maximize the payoff: $\mathbf{F}W_i(\tau_1^*, \tau_2^*) = \sup_{i=1}^{n} \sup_{t \in \mathcal{T}_i} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$

 $\mathbf{\mathsf{E}} W_i(\tau_1^*,\tau_2^*) = \sup_{\tau_1 \in \mathcal{T}_i} \sup_{\tau_2 \in \mathcal{T}^{\tau_1}} \mathbf{\mathsf{E}} W_i(\tau_1,\tau_2).$

Sequential construction of the value

$$\begin{aligned} \mathbf{\mathsf{E}} \mathcal{W}_{i}(\tau_{1}^{*},\tau_{2}^{*}) &= \sup_{\tau_{1}\in\mathcal{T}_{i}} \mathbf{\mathsf{E}} \mathcal{W}_{i}(\tau_{1},\tau_{2}^{*}) = \sup_{\tau_{1}\in\mathcal{T}_{i}} \mathbf{\mathsf{E}} \{\mathbf{\mathsf{E}} \left[\mathcal{W}_{i}(\tau_{1},\tau_{2}^{*}) \middle| \mathcal{F}_{\tau_{1}}\right] \} \\ &= \sup_{\tau_{1}\in\mathcal{T}_{i}} \mathbf{\mathsf{E}} \operatorname{ess\,sup}_{\tau_{2}\in\mathcal{T}^{\tau_{1}}} \mathbf{\mathsf{E}} \left[\mathcal{W}_{i}(\tau_{1},\tau_{2}) \middle| \mathcal{F}_{\tau_{1}}\right] = \sup_{\tau_{1}\in\mathcal{T}} \mathbf{\mathsf{E}} \mathcal{J}_{i}(\tau_{1}), \end{aligned}$$

where $J_i(s) = \mathsf{E}\{W_i(s,\tau_2^*)|\mathcal{F}_s\} = \operatorname{ess\,sup}_{\tau_2 \in \mathcal{T}^s} \mathsf{E}\{W_i(s,\tau_2)|\mathcal{F}_s\}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

The optimization problem

The double stopping problem

Optimization violated by technique chosen

Find two optimal stopping times $\tau_1^* \in \mathcal{T}_i$ and $\tau_2^* \in \mathcal{T}_1^{\tau_1^*}$ in order to maximize the payoff: $\mathbf{F}_{1}W_i(\tau_1^*, \tau_2^*) = \sup_{i=1}^{\infty} \sum_{j=1}^{\infty} \mathbf{F}_{1}W_j(\tau_1, \tau_2)$

 $\mathbf{\mathsf{E}} W_i(\tau_1^*,\tau_2^*) = \sup_{\tau_1 \in \mathcal{T}_i} \sup_{\tau_2 \in \mathcal{T}^{\tau_1}} \mathbf{\mathsf{E}} W_i(\tau_1,\tau_2).$

Sequential construction of the value

$$\begin{aligned} \mathbf{\mathsf{E}} \mathcal{W}_{i}(\tau_{1}^{*},\tau_{2}^{*}) &= \sup_{\tau_{1}\in\mathcal{T}_{i}} \mathbf{\mathsf{E}} \mathcal{W}_{i}(\tau_{1},\tau_{2}^{*}) = \sup_{\tau_{1}\in\mathcal{T}_{i}} \mathbf{\mathsf{E}} \{\mathbf{\mathsf{E}} \left[\mathcal{W}_{i}(\tau_{1},\tau_{2}^{*}) \middle| \mathcal{F}_{\tau_{1}}\right] \} \\ &= \sup_{\tau_{1}\in\mathcal{T}_{i}} \mathbf{\mathsf{E}} \operatorname{ess\,sup}_{\tau_{2}\in\mathcal{T}^{\tau_{1}}} \mathbf{\mathsf{E}} \left[\mathcal{W}_{i}(\tau_{1},\tau_{2}) \middle| \mathcal{F}_{\tau_{1}}\right] = \sup_{\tau_{1}\in\mathcal{T}} \mathbf{\mathsf{E}} J_{i}(\tau_{1}), \end{aligned}$$

where $J_i(s) = \mathbf{E}\{W_i(s, \tau_2^*)|\mathcal{F}_s\} = \operatorname{ess\,sup}_{\tau_2 \in \mathcal{T}^s} \mathbf{E}\{W_i(s, \tau_2)|\mathcal{F}_s\}.$

Construction of the solution:

• Calculate $J_i(s)$ and construct the stopping time τ_2^* ;

2 Calculate $\mathbf{E}W_i(\tau_1^*, \tau_2^*)$ and construct τ_1^* .

The double stopping problem

Sequential solution of the problem

Examples 00

The game approach

Two anglers optimization problem

Players' payoffs-fixed moments

$$W_{i,j}(s,t) = \mathbb{I}_{\{t < s \le t_0\}} g_{1,i}(\overrightarrow{M}_t, j, t)$$

$$\tag{1}$$

$$+\mathbb{I}_{\{s\leq t\leq t_0\}}w_2(\vec{M_s}, j, s, M_t^s, t) - \mathbb{I}_{\{t_0< t\}}C.$$
 (2)

where $g_{1,i}()$ is the part of *i*th player payoff based on the first action of the players and $w_2()$ is the component of the final part of the decision process.

Players' payoffs-random moments

Let τ_i , i = 1, 2 are the strategies of the players to stop individual search and switch to the common search, which is stopped at moment σ . The payoffs of the players are

$$\psi_i(\tau_1,\tau_2) = W_{i,\mathfrak{z}_{\mathcal{N}(\tau_1 \wedge \tau_2)}}(\tau_1 \wedge \tau_2, \sigma^{\tau_1 \wedge \tau_2}). \tag{3}$$

Sequential solution of the problem

Examples 00

The game approach

Two anglers optimization problem

The construction of the solution:

Calculate
$$\sigma^*$$
 and $J_i(s) = \mathbf{E}[g_{1,i}(\vec{M}_s, \mathfrak{z}_{N(s)}, s) + \mathbb{I}_{\{s \le \sigma^* \le t_0\}} w_2(\vec{M}_s, \mathfrak{z}_{N(s)}, s, M^s_{\sigma^*}, \sigma^*) - \mathbb{I}_{\{t_0 < \sigma^*\}} C | \mathcal{F}_s];$

Calculate ($\tau_{1,1}^*, \tau_{1,2}^*$) and (E $\psi_1(\tau_1^*, \tau_2^*)$, E $\psi_2(\tau_1^*, \tau_2^*)$) such that E $\psi_i(\tau_i^*, \tau_{-i}^*) \ge$ E $\psi_i(\tau_i, \tau_{-i}^*)$. for *i* ∈ {1,2}.

Lemma

[Brémaud(1981)] If $\tau \in T_{i,n,K}$, then there exists a positive, $\mathcal{F}_{i,n}$ -measurable, random variable $R_{i,n}$ such that

$$\tau \wedge T_{j,N_{j}(T_{i,n})} + 1 \wedge T_{i,n+1} = (T_{i,n} + R_{i,n}) \wedge T_{j,N_{j}(T_{i,n})+1} \wedge T_{i,n+1}, a.s.,$$
(4)

where $R_{i,n}$ is $\mathcal{F}_{i,n} = \mathcal{F}_{\mathcal{T}_{i,n}}$ -measurable.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

- K the number of fishes in a lake;
- s the moment of changing place;
- $m = M_s \text{total weight of fishes caught by time } s;$

Goal

Find optimal stopping time $\tau_{2,K}^* \in \mathcal{T}_{0,K}^s$ such that: $\mathbf{E}\{Z(s,\tau_{2,K}^*)|\mathcal{F}_s\} = \operatorname{ess\,sup}_{\tau_{2,K} \in \mathcal{T}_{0,K}^s} \mathbf{E}\{Z(s,\tau_{2,K})|\mathcal{F}_s\}.$

Definition

For
$$n = K, \dots, 1, 0$$

 $\Gamma_{n,K}^{s} = \operatorname{ess\,sup}_{\tau \in \mathcal{T}_{n,K}^{s}} E\{Z(s,\tau) | \mathcal{F}_{s,n}\} = E\{Z(s,\tau_{2,n,K}^{*}) | \mathcal{F}_{s,n}\}.$

The double stopping problem

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time

Theorem

Let $s \ge 0$ be the moment of changing place, then:

$$\begin{split} \Gamma^{s}_{K,K} &= Z(s,T_{3,K}), \\ \Gamma^{s}_{n,K} &= \mathbb{I}_{\{T_{3,n} \leq t_{0}\}} \operatorname*{ess\,sup}_{R_{3,n} \in \mathcal{M}(\mathcal{F}_{s,n})} \left\{ E\left[\mathbb{I}_{\{S_{3,n+1} \leq R_{3,n}\}} \Gamma^{s}_{n+1,K} | \mathcal{F}_{s,n}\right] \\ &+ \bar{F}_{3}(R_{3,n}) [\mathbb{I}_{\{R_{3,n} \leq t_{0} - T_{3,n}\}} w(M_{s},s,M^{s}_{n},T_{3,n} + R_{3,n}) \\ &- C\mathbb{I}_{\{R_{3,n} > t_{0} - T_{3,n}\}}] \right\} - C\mathbb{I}_{\{T_{3,n} > t_{0}\}} a.s. \end{split}$$

Krzysztof Szajowski A double optimal stopping of marked renewal process

|▲御▶▲臣▶▲臣▶ 臣|目 わえで

The double stopping problem 000000000 Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

Lemma

$$\Gamma_{n,K}^{s} = \gamma_{K-n}^{s,\mathfrak{z}_{N(s)},M_{s}}(M_{n}^{s},T_{2,n}) \quad n = K,\ldots,0,$$

where

$$\gamma_{j}^{s,k,\overrightarrow{m}}(\widetilde{m},t) = \mathbb{I}_{\{t \leq t_{0}\}} \left\{ w_{2}(\overrightarrow{m},k,s,\widetilde{m},t) + y_{2,j}(\overrightarrow{m},\widetilde{m},t-s,t_{0}-t) \right\}$$
$$- C\mathbb{I}_{\{t > t_{0}\}}$$

and $y_{2,j}(a, \tilde{a}, b, t_0 - t)$ is given recursively as follows:

$$\begin{array}{rcl} y_{2,0}(a,\widetilde{a},b,t_0-t) &=& 0,\\ y_{2,j}(a,\widetilde{a},b,t_0-t) &=& \max_{0\leq r\leq t_0-t}\phi_{2,y_{2,j-1}}(a,\widetilde{a},b,t_0-t,r). \end{array}$$

The double stopping problem 000000000 Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

Lemma c.d.

and the function $\phi_{2,\delta}(a, \tilde{a}, b, c, r)$ is given by the equation:

$$\begin{split} \phi_{2,\delta}(a,\tilde{a},b,c,r) &= \int_0^r \bar{F}_3(z) \{ \alpha_3(z) [E(g_2(a+X_2)-g_2(a)) \\ &+ E\delta(a+X_2,b+z,c-z)] - c_2'(b+z) \} dz. \end{split}$$

where
$$\alpha_i = \frac{f_i}{F_i}$$
, $\Delta_i(\hat{a}) = \mathbf{E}[g_i(\hat{a} + X_i) - g_i(\hat{a})]$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

Definition

 $B = B([0,\infty) \times [0, t_0] \times [0, t_0])$ – the space of all bounded continuous functions with the norm $\|\delta\| = \sup_{a,b,c} |\delta(a, b, c)|$.

Remark

B with the norm supremum is complete space.

Definition

The operator $\Phi_2: B \to B$ is given by

$$(\Phi_2\delta)(a,b,c) = \max_{0 \le r \le c} \phi_{2,\delta}(a,b,c,r).$$

The double stopping problem

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

Remark

$$y_{2,j}(a, b, c) = (\Phi_2 y_{2,j-1})(a, b, c);$$

Lemma

There exists function $r_{2,i}^*(a, b, c)$ such that:

$$y_{2,j}(a,b,c) = \phi_{2,y_{2,j-1}}(a,b,c,r_{2,j}^*(a,b,c)).$$

Corollary

The function $\gamma_i^{s,m}(\widetilde{m},t)$ takes the maximum value for

$$r=r_{2,j}^*(\widetilde{m}-m,t-s,t_0-t).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The double stopping problem

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

Theorem

lf

$$\begin{aligned} R^*_{3,i} &= r^*_{3,K-i} (M^s_i - M_s, T_{2,i} - s, t_0 - T_{2,i}), \\ \eta^s_{n,K} &= K \wedge \inf\{i \geq n : R^*_{2,i} < S_{2,i+1}\}, \end{aligned}$$

then the stopping time $\tau_{2,n,K}^* = T_{2,\eta_{n,K}^s} + R_{2,\eta_{n,K}^s}^*$ is optimal in the class $\mathcal{T}_{n,K}^s$ and $\Gamma_{n,K}^s = E \left[Z(s, \tau_{2,n,K}^*) | \mathcal{F}_{s,n} \right].$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, K - fixed

Algorithm:

If you have *n* fishes at the time $t_{2,n} = T_{2,n}$ which weight $m_n^s = M_n^s$ then:

Calculate

$$r_{2,n}^* = r_{2,K-n}^*(m_n^s - m, t_{2,n} - s, t_0 - t_{2,n});$$

2 Wait by the time $t_{2,n} + r_{2,n}^*$;

• If the next capture occurs before the time $t_{2,n} + r_{2,n}^*$ then calculate

$$r_{2,n+1}^* = r_{2,K-(n+1)}^*(m_{n+1}^s - m, t_{2,n+1} - s, t_0 - t_{2,n+1})$$

and repeat the procedure;

• Else \longrightarrow STOP

The double stopping problem

Sequential solution of the problem

Construction of the second stopping moment

Second stopping time, $K \longrightarrow \infty$

Let us assume that $K \longrightarrow \infty$.

Goal:

Find stopping time $\tau_2^* \in \mathcal{T}^s$, which is optimal in the class \mathcal{T}^s :

$$J(s) = E\{Z(s,\tau_2^*)|\mathcal{F}_s\} = \operatorname{ess\,sup}_{\tau_2 \in \mathcal{T}^s} E\{Z(s,\tau_2)|\mathcal{F}_s\}.$$

Lemma

If $F_2(t_0) < 1$ then the operator $\Phi_2 : B \to B$ is a contraction.

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目 のへで

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, $K \longrightarrow \infty$

Lemma

There exists $y_2 \in B$ such that

$$y_2 = \Phi_2 y_2$$

and the function $y_2 \in B$ is the limit of the sequence $y_{2,K}$, when K tends to infinity.

Proof:

- $y_{2,K} \in B$ and B is complete space,
- The operator Φ_2 is a contraction,
- Banach Fixed Point Theorem

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = り へ ゆ

The double stopping problem 000000000 Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, $K \longrightarrow \infty$

Lemma

The limit $\gamma^{s,m} = \lim_{K \to \infty} \gamma_K^{s,m}$ exists and

$$\gamma^{s,m}(\widetilde{m},t) = \mathbb{I}_{\{t \le t_0\}} [w_2(m,s,\widetilde{m},t) + y_2(\widetilde{m}-m,t-s,t_0-t)] - C\mathbb{I}_{\{t > t_0\}}.$$

Remark

$$\gamma^{s,m}(m,s) = \mathbb{I}_{\{s \leq t_0\}}u(m,s) - C\mathbb{I}_{\{s > t_0\}},$$

where

$$u(m,s) = g_1(m) - c_1(s) + g_2(0) - c_2(0) + y_2(0,0,t_0-s).$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ = の < ⊙

The double stopping problem

Sequential solution of the problem

Construction of the second stopping moment

Second stopping time, $K \longrightarrow \infty$

Lemma

The function $\bar{y}(t_0 - s) = y(0, 0, t_0 - s)$ has bounded left-hand sided derivative with respect to s for $s \in (0, t_0]$.

Proof:

- The operator Φ_2 is contraction and $y_2 = \Phi_2 y_2$;
- Taylor's Formula;

Lemma

The function u(m, s) is continuous, bounded and measurable with bounded left-hand sided derivatives with respect to s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

The double stopping problem

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, $K \longrightarrow \infty$

Theorem

If $F_2(t_0) < 1$, then

- The limit $\tau_{2,n}^* = \lim_{K \to \infty} \tau_{2,n,K}^*$ a.s. exists.
- The stopping time $\tau_{2,n}^* \leq t_0$ is an optimal stopping rule in the set $\mathcal{T}^s \cap \{\tau \geq T_{2,n}\}$.

•
$$E\{Z(s,\tau_{2,n}^*)|\mathcal{F}_{s,n}\} = \gamma^{s,m}(M_n^s,T_{2,n})$$
 a.s.

Corollary

$$\begin{aligned} J(s) &= E\left[Z(s,\tau_2^*)|\mathcal{F}_s\right] = \gamma^{s,M_s}(M_s,s) \\ &= \mathbb{I}_{\{s \leq t_0\}} u(M_s,s) - C\mathbb{I}_{\{s > t_0\}} \ a.s. \end{aligned}$$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ め Q @

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the second stopping moment

Second stopping time, $K \longrightarrow \infty$

Proof:

- The sequence τ^{*}_{2,n,K} is nondecreasing with respect to K and bounded by t₀;
- $V(t) = t T_{2,N_2(t)} \Rightarrow \xi^s(t) = (t, M^s_t, V(t))$ is Markov process;

•
$$Z(s,t) = p^{s,m}(\xi^s(t));$$

•
$$\mathcal{A}p^{s,m}(t,\widetilde{m},v) = \frac{f_2(v)}{F_2(v)}[Eg_2(\widetilde{m}+X_2-m)-g_2(\widetilde{m}-m)]-c'_2(t-s);$$

- $p^{s,m}(\xi^s(t)) p^{s,m}(\xi^s(s)) \int_s^t (\mathcal{A}p^{s,m})(\xi^s(z))dz$ is a martingale;
- From Dynkin formula and dominated convergence Theorem:

$$E\left[Z(s,\tau_{2,n}^*)|\mathcal{F}_{s,n}\right] = \lim_{K \to \infty} E\left[Z(s,\tau_{2,n,K}^*)|\mathcal{F}_{s,n}\right]$$
$$= \lim_{K \to \infty} \gamma_{K-n}^{s,M_s}(M_n^s,T_{2,n}) = \gamma^{s,M_s}(M_n^s,T_{2,n}) \text{ a.s.}$$

• $E[Z(s,\tau)|\mathcal{F}_{s,n}] \leq E[Z(s,\tau_{2,n}^*)|\mathcal{F}_{s,n}]$ $\forall \tau \in \mathcal{T}^s \cap \{\tau_{2,n} \geq T_{2,n}\}$

The double stopping problem 000000000 Sequential solution of the problem

Examples 00

Construction of the first stopping moment

First stopping time

Corollary

- $J(s) = \mathbb{I}_{\{s \le t_0\}} u(M_s, s) C \mathbb{I}_{\{s > t_0\}};$
- The function u(m, s) is continuous, bounded, measurable with bounden left-hand sided derivatives with respect to s;

 \implies J(s) has similar structure like the process Z(s, t) and the rest of the calculations runs like for second stopping time.

▲母 → ▲目 → 目 → ▲目 → ● ● ●

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the first stopping moment

First stopping time

Theorem

If $F_1(t_0) < 1$ then

- The limit $\tau^*_{1,n} = \lim_{K \to \infty} \tau^*_{1,n,K}$ a.s. exists;
- The stopping time $\tau_{1,n}^* \leq t_0$ is an optimal stopping rule in the set $\mathcal{T} \cap \{\tau \geq T_{1,n}\}$;

•
$$E\left[J(\tau_{1,n}^*)|\mathcal{F}_n\right] = \gamma(M_n, T_{1,n})$$
 a.s.

Optimal revenue

$$EZ(\tau_1^*,\tau_2^*) = EJ(\tau_1^*) = \gamma(M_0, T_{1,0}) = \gamma(0,0),$$

where $\tau_1^* = \tau_{1,0}^*$ and $\tau_2^* = \tau_{2,0}^*$ were calculated above.

イロト (母) (ヨト (ヨト) ヨヨ ののの

The double stopping problem

Sequential solution of the problem

Examples 00

Construction of the first stopping moment

Nash value and point

Let us denote
$$\Gamma_{i,j,n,K} = \mathbf{E}\psi_i(\tau_1^*, \tau_2^*)$$
, when $\tau_1^*, \tau_2^* \in \mathcal{T}_{j,n,K}$

Theorem

If
$$F_i(t_0) < 1$$
, $i \in \{1,2\}$ then

- The limit $\tau^*_{i,j,n} = \lim_{K \to \infty} \tau^*_{i,j,n,K}$ a.s. exists;
- The stopping times $\tau_{i,j,n}^* \leq t_0$, $\iota \in \{1,2\}$ form a Nash point in the set $\mathcal{T} \cap \{\tau \geq T_{j,n}\}$;

•
$$\mathsf{E}\left[J_i(\tau_{1,n}^* \wedge \tau_{2,n}^*)|\mathcal{F}_{j,n}\right] = \gamma_{i,j}(M_n, T_{j,n})$$
 a.s.

Nash value

$$\mathbf{E}\psi_{i}(\tau_{1}^{*}\wedge\tau_{2}^{*})=\mathbf{E}J_{i}(\tau_{1}^{*}\wedge\tau_{2}^{*})=\gamma_{i,1}(M_{0},T_{1,0})=\gamma_{i,1}(0,0),$$

where $\tau_1^* = \tau_{1,1,0}^*$ and $\tau_2^* = \tau_{2,1,0}^*$ were calculated above.

The double stopping problem 000000000

Sequential solution of the problem

Examples 00

Construction of the first stopping moment

Nash value and point

Lemma

 $\Gamma_{i,j,n,K} = \gamma_{i,K-n}(M_n, j, T_{i,n})$ for $n = K, \ldots, 0$, where the sequence of functions $\gamma_{i,i}$ can be expressed as: $\gamma_{i,k}(\overrightarrow{m},j,s) = \mathbb{I}_{\{s \leq t_0\}} \left\{ u(m,j,s) + y_{i,j}(\overrightarrow{m},k,s,t_0-s) \right\} - C \mathbb{I}_{\{s > t_0\}}$ and $y_{i,i}(\vec{a}, k, b, c)$ is given recursively as follows: $\vec{y}_0(a, k, b, c) = 0$, $\vec{y}_i(a, k, b, c) = val\vec{\phi}_{\vec{v}_i}$, (a, b, c, r, s), where, for $i \neq j$, $i, j \in \{1, 2\}$ $\phi_{i,\delta}(a,b,c,r_i,r_j) = \int_0^{r_i} \overline{F}_i(z)F_j(b+z-r_2)\{\alpha_i(z)[\Delta_i(a)$ $+E\delta(a+X_i,b+z,c-z)$

The double stopping problem

Sequential solution of the problem

Examples 00

Infinitesimal operator

Notation

$$\begin{split} \tilde{f}_{2}(t) &= \mathcal{A}p^{s,m}(\xi^{s}(t)) \\ &= \frac{f_{2}(V_{2}(t))}{\bar{F}_{2}(V_{2}(t))}[Eg_{2}(M_{t}^{s}+X_{2}-m)-g_{2}(M_{t}^{s}-m)] \\ &- c_{2}'(t-s), \end{split}$$

Notation

$$\begin{split} \zeta_1(s) &= \mathcal{A}p(\xi(s)) \\ &= \frac{f_1(V_1(s))}{\bar{F}_1(V_1(s))} [Eg_1(M_t + X_1) - g_1(M_t)] \\ &- [\bar{y}_{2-}'(t_0 - s) + c_1'(s)] \,. \end{split}$$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

The double stopping problem 000000000

Sequential solution of the problem

Monotone case

Remark

If the process ζ_i(t), i ∈ {1,2}, has decreasing paths, then the optimal stopping time is given by:

$$\tau_{i,n}^* = \inf\{t \in [T_{i,n}, t_0] : \zeta_i(t) \le 0\}$$

If the process ζ_i(t) has nondecreasing paths, then the optimal stopping time is given by: τ^{*}_{i,n} = t₀ for all n ∈ N.

▲冊▶ ▲■▶ ▲■▶ ■目 のQ@

The basic problem	The double stopping problem	Sequential solution of the problem	Examples ••
Example 1			
Example 1			

If for $i \in \{1,2\}$

- S_i has exponential distribution with constant rate λ_i ;
- c_i is convex;
- g_i is increasing and concave;
- s-the moment of changing place, $m = M_s$;

•
$$t_{2,n} = T_{2,n}, \ m_n^s = M_n^s;$$

•
$$t_{1,n} = T_{1,n}, m_n = M_n$$

Solution:

$$\begin{aligned} \tau_{2,n}^* &= \inf\{t \in [t_{2,n}, t_0] : \lambda_2[Eg_2(m_n^s + X_2 - m) - g_2(m_n^s - m)] \le c_2'(t - s)\} \\ \tau_{1,n}^* &= \inf\{t \in [t_{1,n}, t_0] : \lambda_1[Eg_1(m_n + X_1) - g_1(m_n)] \le c_1'(t)\} \end{aligned}$$

The double stopping problem

Sequential solution of the problem

◇ ♪ ▲ ヨ ▶ ▲ ヨ ▶ ▲ ■ ▲ ● ▲ ●

Example 2

Example 2

If for $i \in \{1,2\}$

- S_i has exponential distribution with constant rate λ_i ;
- c_i is concave;
- g_i is increasing and convex;

Solution:

$$\tau_{1,n}^* = \tau_{2,n}^* = t_0.$$

Literature I

- - Brémaud, P., 1981. Point Processes and Queues. Martingale Dynamics. Springer-Verlag, New York.
- Dalal, S., Mallows, C., 1988. When should one stop testing software. J. Am. Stat. Assoc. 83 (403), 872–879.
- Fakhre-Zakeri, I., Slud, E., 1996. Optimal stopping of sequential size-dependent search. Ann. Stat. 24 (5), 2215–2232.
- Ferguson, T., 1997. A Poisson fishing model. In: Pollard, D., Torgersen, E., Yang, G. (Eds.), Festschrift for Lucien Le Cam: research papers in probability and statistics. Springer, New York, NY, pp. 235–244.
- Karpowicz, A., 2009. Double optimal stopping in the fishing problem. J. Appl. Probab. 46 (2), 415–428.

同 ト イヨ ト イヨ ト ヨ ヨ らくぐ

Appendix •••

Literature II

- Karpowicz, A., Szajowski, K., 2008. Time management in a Poisson fishing model. Preprint 9, Institute of Mathematics and Computer Sci., Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, stochastic Optimization and Dice Games II Invited Session on 2008 International Workshop on Applied Probability, Compiegne, France, 6 pages, 2008.
- Kramer, M., Starr, N., 1990. Optimal stopping in a size dependent search. Sequential Anal. 9, 59–80.
- Starr, N., 1974. Optimal and adaptive stopping based on capture times. J. Appl. Probab. 11, 294–301.
- - Starr, N., Wardrop, R., Woodroofe, M., 1976. Estimating a mean from delayed observations. Z. f ür Wahr. 35, 103–113.
- Starr, N., Woodroofe, M., 1974. Gone fishin': Optimal stopping based on catch times. U. Mich. Report., Dept. of Statistics 33.

► < ■ ► < ■ ► = = = < <</p>

Appendix

IFIP conference

25th IFIP TC7 Conference

September 12-16, 2011

www.ifip2011.de infoifip2011.de

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●