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Queuing system 7/M/1/0
Players try to send their requests in the system:
e discipline of request arrivals is unknown;

e request service time is exponentialy distributed with parameter
1/n (u>0);

e ONly one request can be served at one time;

e system with loss: arriving request is failed if another request is
served in the system already.

Examples: transport, hotel, etc. reservation systems; filesystem.



Payoffs

" Convinience"” function C(t) — a desirability to start request ser-
vice at the moment ¢.

e In case the request arrives at time ¢t and is served successfully,
player obtains C(t), otherwise he obtains 0. C(t) > 0 — profit,
C(t) < 0 — costs.

e Suppose that player needs to try the system in any case even
if he incur costs.
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Example: Convinience to access the Internet in the office from
one computer during working day.



Strategies and payoffs

Player's mixed strategy is a distribution density of arrival time
moments ¢t on time interval [tg, T].

Payoff function is the expected player’s profit (or costs) at the
moment t.

An equilibrium players’ strategies must maximize their payoff
functions on the interval [tg, T7.



The case of two players
Two players choose arrival time moments: ¢t and s. By symmetry
their optimal behavior will be the same. Probability of request
service starting at the moment ¢t for player when his opponent
uses mixed strategy g¢(-) is:

“

?Og(s)ds +

| t
st + [ g(s)(1 — e=1lt=9))ds,
and his payoff function is as follows:
4 o0
H(t,g) = C(t) ( [ g(s)(1 — e mt=))ds + | g(s)ds>
— 00 t

t
= C(t) <1 — [ g(s)e_“(t_s)ds> :



The equilibrium g, tg and T" must satisfy:

1. for all t € [to,T] 2H§t9) — o
T

2. [g(t)dt =1,
to

3. forall t € (—oco,0) ¢g(t) >0 and H(t,g) < H(tg,g).



O0H(t,9)
ot

Transforming = 0 we obtain

/ C(D)g(t) = C'(t)

_[o 9ls)eds == 0wy —ow (1)
g () (C2(Mp — CHC'(1)) +
and then g(1) (C()C"(t) — 2(C"(£))2 + C'(t)C(t)p) (2)
—u(CHC"(t) — 2(C'(1))2 + C'(H)C(t)u) = 0.
The solution for (2) is g(t) = Kel® 4 4, where

L CN(r) _ oCN)

ORI
I(t) = / e dr.
to C'(r)

The constant K can be found substituting ¢(¢) in (1) and letting
t = 1p.




The equilibrium strategy ¢g(t) is

C'(t .
g(t) — (C((too)) o “) el(t) _I_ s if ¢ € [thT]a
0, otherwise,

where
t C"(r) _ ~»C'(7)
1) = [ 7 e T,
1 — C(T) .
to Her(r)
The equilibrium payoff function is continuous and is as follows:
( C(t) for t € (—oo,tg)
H(t) ={ C(o) : for ¢t € [tg,T]
\ C(t) (1 — e~ H(t=T) (1 — C((tTO)))) for t € (T, 00).




At the same time must be

T
/g(t)dt — 1 and g(t) > 0 for all £ € (—oo, c0),

o

C(t) < C(tg) for t € (—o0,tg],

C(tg) > C(t) (1 _ e H(=T) <1 _ g((tTO))» for t € [T, 00).



An exponential “convinience” function case

Let C(t) = aeb® for t > tg and C(t) = aebto = C(tg) for t < tp.
Then
— (b — —b(t—to)
g(t) = (b—p)e + u.

Consider tg is known, then right bound of [tg,T] can be found
from
be—b(T—to)

M b T—t0) — 1+ (T — to)

Then on [tg,T] the equilibrium payoff will be H(t,g) = aebto.
To provide feasible solution following condition must be per-
formed for t > T

aelto > qelt (1 — e_“(t_T)(l — e_b(t_tO))) .

When b > 0 and a < O it is true.







A parabolic “convinience” function case

Let C(t) = at(1l —t) with a > 0. Then

(1 — 2t — pt + pt?)to(1 — to)
t2(1 —t)2
It is proven that exist tg and T':

g(t) = + p

T
0<tg<s<T<1 g(T)=0and [g(t)dt=1
to

and such strategy ¢(t) on [tg,T] is a feasible equilibrium.






The case of > 3 players

Consider the queue system that is used by n 4+ 1 players, wich
select arrival times 71,...,m7, and t correspondingly.

Suppose that the player uses a pure strategy t when other players
with numbers i =1,...,n use the same mixed strategies ¢g(-). His
payoff function is

H(t,g") = C(t)Pn(t,g),

where Py (t,g) is a probability that his request arriving at time ¢
is served successfully.



t T
Pn(t, g) =1 — n f g(Tl)e_:u(t_Tl)(l — (n — 1) fl 9(7-2)6_:“(7-1_7-2).

(1 —-—(n-2) _}2 ... )drp)dT1,

or recurrently
t
Pi(t,g) =1— [ g(r)e #=T)dr
— 00

¢
Po(t,g) =1—-2 [ g(r)e *t=T) P (1, g)dr

¢
Pu(t,g) =1—n [ g(r)e *t=mI)P,_1(r,9)dr.
— 0



“Convinience” for uniform strategies

Let g(¢) =1 on t € [0, 1].

P’fl(tag) —
n i n—1 i n—i—1 ;
14 D <(1 oty z Lt ot b} (u1) ) (—ﬁ):f> _
1= ]=
_ n! "_1(—u) L (- u)i(l—t)i
=1+ —)" <z§0 —e H Z :

Cn(t) = Cn(0)/Pa(t, g) on t € [0,1].

If we consider n — oo then Pn(t,g) — 1 and Cp(¢t) tends to
constant not depending on t.



“Convinience” for exponential strategies

Let g(t) = Xe M, t > 0.

nl e~ _ o—(n—i)At—put

Pa(t,g) =1+ Z (n— i)

1=1

ﬁlu N

j:

Cn(t) = Cn(0)/Pn(t,g) on t > 0.
If uis near O, i.e. average service time is large, and t < oo then

)
(G—p/N) ~il, e a1and Pu(t,g) ~ e A
5

J
Then, if n — oo, Pu(t,g) — 0, and Cp(t) — co.



