УДК 517.97 ББК 22.18

ИГРА ПРЕСЛЕДОВАНИЯ-УБЕГАНИЯ НА РЕБЕРНОМ ОСТОВЕ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ. III*

АБДУЛЛА А. АЗАМОВ АТАМУРАТ Ш. КУЧКАРОВ АЗАМАТ Г. ХОЛБОЕВ Институт математики

100170, Узбекистан, Ташкент, ул. Мирзо Улугбек, 81 e-mail: abdulla.azamov@gmail.com, azamatholboyev@gmail.com

Продолжено решение задачи качества для игры между группой из n преследователей и одним убегающим, движущимся по графу реберного остова правильного многогранника с одинаковой максимальной скоростью. В этой части рассмотрены случаи правильных многогранников с 24 и 120 вершинами в пространстве \mathbb{R}^4 . Доказано, что если $n \leq 2$, то игра заканчивается в пользу убегающего, а при $n \geq 3$ – в пользу группы преследователей.

Ключевые слова: игра преследования-убегания, задача сближения, задача уклонения, позиционная стратегия, контрстратегия, точная поимка, правильный 24-вершинник, правильный 120-вершинник, одномерный остов.

Поступила в редакцию: 16.01.19 После доработки: 25.04.19 Принята к публикации: 10.06.19

^{*} Работа выполнена при финансовой поддержке Комитета по координации развития науки и технологий РУз (грант № ОТ-Ф4-84)

1. Введение

В этой части будет продолжено решение задачи качества для игры преследования-убегания по графу, состоящему из одномерного остова, т.е. из ребер правильных многогранников ([5], глава 22 и [4], глава 12). Случай многогранников в \mathbb{R}^3 , а также симплекса, куба и кокуба в \mathbb{R}^d , $d \ge 4$, были разобраны в первых двух частях статьи [1, 2] (о постановке задач см. [1]). Первоначально авторы предполагали рассмотреть в этой части оставшиеся три многогранника в \mathbb{R}^4 – так называемые 24, 120 и 600-вершинники, которые будут обозначены M_{24} , M_{120} , M_{600} , соответственно. Решение задачи для M_{24} не сложнее, чем для додекаэдра, но случаи M_{120} , M_{600} оказались намного сложнее, чем казалось первоначально. В связи с этим, в этой статье будут разобраны случаи M_{24} и M_{120} , а случай 600-вершинника будет рассмотрен отдельно.

Таким образом, основной результат этой части состоит в доказательстве равенств $N(M_{24}) = N(M_{120}) = 3$, где N(M) – минимальное число преследователей, достаточных для поимки убегающего на графе M.

2. Графометрия правильных многогранников M_{24} и M_{120}

Прежде чем приступить к доказательству теоремы, обсудим строение графов, состоящих из одномерных остовов многогранников M_{24} и M_{120} (эти обозначения сохраняются и для соответствующих графов).

 M_{24} конструктивно есть выпуклая оболочка 24 своих вершин с координатами (±1,±1,±1,±1), (±2,0,0,0), (0,±2,0,0), (0,0,±2,0) и (0,0,0,±2) (при всевозможных комбинациях знаков). Из каждой вершины выходят по 8 ребер, вторые концы которых образуют трехмерный куб, а общее число ребер равняется 96.

 M_{120} конструктивно есть выпуклая оболочка вершин трех типов: 16 точек с координатами (±1,±1,±1,±1), 8 точек с координатами (±2,0,0,0), (0,±2,0,0), (0,0,±2,0), (0,0,0,±2) (эти 24 точки образуют M_{24}) и еще 96 точек, которые получаются из наборов (± τ ,±1,± τ^{-1} ,0) при всевозможных комбинациях знаков и четных перестановок координат ($\tau = \frac{\sqrt{5}+1}{2}$ – отношение «золотого сечения»). Из каждой вершины выходят по 12 ребер, вторые концы которых

образуют икосаэдр.

Какие вершины соединены ребром однозначно определяется длиной ребер. А именно, если A и B – вершины, то AB есть ребро тогда и только тогда, когда |AB| равно 2 в случае M_{24} и $2\tau^{-1}$ в случае M_{120} . Этим условием графы M_{24} и M_{120} полностью определяются.

Помимо евклидовой метрики на этих графах, посредством которой определены длины ребер, будем пользоваться и метрикой графа, когда за единицу измерения принимается длина ребра, а за расстояние между точками – длина наименьшего пути, соединяющего эти точки.

В наших рассуждениях существенную роль играют изображения графов M_{24} и M_{120} . С многогранником M_{24} проблем нет, но в отличие от него изобразить граф M_{120} непросто. В литературе обычно приводится изображение в виде симметричной розетки ([4], рис. 12.5.6.2), но такое изображение для нашей цели совсем не подходит – M_{120} имеет 720 ребер.

В связи с этим, мы будем пользоваться другим, послойным изображением. При таком изображении, например, обычный трехмерный куб $|x_i| \leq 1, i = 1, 2, 3$, представляется в виде графа из 4 слоев: самый верхний и самый нижний слои состоят из вершин (1, 1, 1), (-1, -1, -1), соответственно, второй слой – из вершин (-1, 1, 1), (1, -1, 1) и (1, 1, -1), еще один слой – из вершин (1, -1, -1), (-1, -1, 1). Уровень слоев определяется «потенциалом» $x_1 + x_2 + x_3$.

В случае многогранников M_{24} и M_{120} для послойного изображения «потенциал» окажется еще проще: вершины многогранника, имеющие одну и ту же первую координату, равную *e*, лежат на гиперплоскости $x_1 = e$ и образуют соответствующий слой $\Sigma(e)$.

Так, M_{24} будет иметь 5 слоев (рис. 1; наряду со слоями изображены примеры смежности вершин из разных слоев):

слои $\Sigma(\pm 2)$ содержат по одной вершине ($\pm 2, 0, 0, 0$), соответственно; слой $\Sigma(+1)$ содержит 8 вершин ($+1, \pm 1, \pm 1, \pm 1$), образующих трехмерный куб (аналогично $\Sigma(-1)$);

слой $\Sigma(0)$ содержит 6 вершин $(0, \pm 2, 0, 0)$, $(0, 0, \pm 2, 0)$ и $(0, 0, 0, \pm 2)$, никакая пара из которых не соединена ребром (т.е. образуют пустой граф без рёбер).

Рисунок 1.

Аналогично, вершины M_{120} лежат на девяти слоях (рис. 2). Укажем составы слоев (ограничимся слоями с $x_1 \ge 0$):

слой $\Sigma(2)$ состоит из вершины (2, 0, 0, 0);

слой $\Sigma(\tau)$ состоит из 12 вершин $(\tau, \pm 1, \pm \tau^{-1}, 0)$, $(\tau, \pm \tau^{-1}, 0, \pm 1)$, $(\tau, 0, \pm 1, \pm \tau^{-1})$, образующих икосаэдр, который является подграфом M_{120} ;

слой $\Sigma(1)$ состоит из 20 вершин $(1, \pm \tau, 0, \pm \tau^{-1})$, $(1, \pm \tau^{-1}, \pm \tau, 0)$, $(1, 0, \pm \tau^{-1}, \pm \tau)$, $(1, \pm 1, \pm 1, \pm 1)$, которые образуют додекаэдр, также являющийся подграфом;

слой $\Sigma(\tau^{-1})$ состоит из 12 вершин $(\tau^{-1}, \pm \tau, \pm 1, 0), (\tau^{-1}, \pm 1, 0, \pm \tau), (\tau^{-1}, 0, \pm \tau, \pm 1),$ образующих снова икосаэдр, но на этот раз являющийся пустым подграфом;

слой $\Sigma(0)$ состоит из 30 вершин $(0, \pm \tau, \pm \tau^{-1}, \pm 1), (0, \pm 1, \pm \tau, \pm \tau^{-1}), (0, \pm \tau^{-1}, \pm 1, \pm \tau), (0, \pm 2, 0, 0), (0, 0, \pm 2, 0), (0, 0, 0, \pm 2),$ образующих полуправильный многогранник, называемый икосододекаэдром [6].

Рисунок 2.

Его одномерный остов образует граф Кэли степени 4. Другие особенности графов M_{24} , M_{120} будут описаны в соответствующем месте рассуждений при доказательстве Теорем 2 и 3.

3. Теорема 1. $N(M_{24}) = 3$

Начнем с доказательства того, что два преследователя P_1 и P_2 не в состоянии поймать Q. Отметим, что в нашей постановке в начале игры убегающему Q предоставляется возможность выбирать свое начальное положение, зная начальные положения преследователей, чтобы исключить тривиальные случаи, например, когда Q находится между преследователями на одном ребре [1].

В рассматриваемом случае в начальный момент времени Q может выбрать любую вершину M_{24} . Обозначим ее A. Пусть A_1, A_2, \ldots, A_8

10 А.А. Азамов, А.Ш. Кучкаров, А.Г. Холбоев

– соседние с ней вершины. Можно считать, что при этом по крайней мере один из преследователей, скажем P_1 , находится на расстоянии (в метрике графа) меньше 1/2 от A. Пусть это будет $P_1 \in AA_1$. Тогда где бы ни находился преследователь P_2 , игрок Q в состоянии добраться до одной из вершин $A_k, k = 2, 3, \ldots, 8$, раньше P_2 . Чтобы убедиться в этом, достаточно рассмотреть случаи, когда P_2 в начальный момент времени находится на одной из вершин слоев $\Sigma(1)$ и $\Sigma(0)$, поскольку остальные вершины находятся от вершины A на расстоянии больше 2 (рис. 3).

Рисунок 3.

В случае $P_2 \in \Sigma(1)$ имеет место неравенство $P_2A_k > 2$ (в метрике графа) по крайней мере для четырех значений k, а в случае $P_2 \in \Sigma(0)$ оно имеет место по крайней мере для трех значений k. Следовательно, Q всегда имеет возможность безопасно перейти на одну из таких вершин.

Теперь покажем, что три преследователя P_1, P_2 и P_3 в состоянии поймать Q. Предпишем P_1 и P_2 занять пару антиподальных вершин, скажем A = (2, 0, 0, 0) и $\bar{A} = (-2, 0, 0, 0)$, а P_3 – преследовать Q «по пятам». Тогда Q будет вынужден пройти через какую-то вершину M_{24} . Пусть это будет вершина B. Соответствующий момент времени обозначим t_0 . Без потери общности можно считать, что B находится

на одном из слоев $\Sigma(1)$ и $\Sigma(0)$. Под натиском P_3 убегающий Q будет вынужден направляться к одной из соседних с B вершин.

В случае $B \in \Sigma(1)$ преследователю P_1 предпишем следующий способ движения: если Q пойдет по ребру AB, то P_1 движется симметрично с ним относительно центра этого ребра. Если же Q двинется в сторону вершины A_k из слоя $\Sigma(1)$, то P_1 двинется по ребру AA_k . Тогда Q, очевидно, будет пойман преследователем P_1 .

Рассмотрим теперь случай, когда Q первоначально находился в слое $\Sigma(0)$ или был вынужден перейти к нему из слоя $\Sigma(1)$. Пусть $Q \in \Sigma(0)$ в момент времени $t = t_1$. Теперь вспомним, что никакая пара вершин слоя $\Sigma(0)$ не соединена ребром, поэтому в дальнейшем Qбудет вынужден покинуть слой $\Sigma(0)$ из-за преследования P_3 и будет вынужден перейти на один из слоев $\Sigma(\pm 1)$. Начиная с этого момента времени $t = t_1$ преследователям P_1 и P_2 предпишем придерживаться следующего способа движения: если Q пойдет по ребру CD, $C \in$ $\Sigma(0)$, $D \in \Sigma(1)$, то P_2 останется на месте, а P_1 двинется по ребру AD(аналогично для $D \in \Sigma(-1)$).

Рисунок 4.

12 А.А. Азамов, А.Ш. Кучкаров, А.Г. Холбоев

В результате Q будет пойман преследователем P_1 по достижении слоя $\Sigma(1)$ или преследователем P_2 , когда Q достигнет $\Sigma(-1)$.

4. Теорема 2. $N(M_{120}) \geq 3$

Мы должны показать, что два преследователя P_1 и P_2 не в состоянии поймать Q. Можно считать, что в начальный момент время Q находится в вершине A = (2, 0, 0, 0). Соседние с ней вершины $A_k, k = 1, 2, 3, ..., 12$ образуют икосаэдр (который в [4] назван звездой этой вершины; см. рис. 5).

Пусть $P_1 \in AA_k$ для некоторого k, k = 1, 2, ..., 12. Здесь также можем считать $|AP_1| < 1/2$ в метрике графа. Если при этом $|AP_2| > 2$, то Q может перейти к любой из соседних вершин, отличной от A_k , не опасаясь встречи с P_2 . Пусть далее $|AP_2| \le 2$. Более того, можно ограничиться рассмотрением случая, когда P_2 занимает какую-то вершину. Разберем возможные случаи расположения P_2 .

1-случай: $P_2 \in \Sigma(\tau)$. Вершина P_2 имеет 5 соседей в этом же слое $\Sigma(\tau)$. Если учесть то, что P_1 загораживает от Q еще одну вершину, то окажется, что Q может перейти к любой из оставшихся 5 вершин слоя $\Sigma(\tau)$ без всякого опасения быть пойманным.

2-случай: $P_2 \in \Sigma(1)$. Согласно графометрии M_{120} , в этом случае P_2 имеет 3 соседа в слое $\Sigma(\tau)$, и Q имеет возможность безопасно перейти к одной из 8 вершин слоя $\Sigma(\tau)$.

3-случай: $P_2 \in \Sigma(\tau^{-1})$. Каждая вершина из слоя $\Sigma(\tau^{-1})$ имеет ровно одну соседнюю вершину в слое $\Sigma(\tau)$, поэтому, с учетом того, что P_2 загораживает еще одну вершину из этого же слоя, для Q будет безопасным переход к любой из десяти оставшихся вершин слоя $\Sigma(\tau)$.

Таким образом, во всех случаях *Q* в состоянии перейти в одну из соседних вершин, избежав поимки.

5. Теорема 3. $N(M_{120}) \leq 3$

Требуется показать, что три преследователя P_1, P_2, P_3 смогут завершить преследование. Доказательство разобьем на несколько этапов.

5.1. Начальный этап преследования: симметризация

Предпишем преследователям P_1 и P_2 занять пару антиподальных вершин, например, $P_1 = (2, 0, 0, 0), P_2 = (-2, 0, 0, 0)$. Начиная с этого момента времени предпишем P_3 приступить к преследованию «по пятам» Q. Пусть t_0 – первый момент времени, когда Qокажется на какой-то вершине графа M_{120} . Эту вершину обозначим $E = (e_1, e_2, e_3, e_4)$ и разберем послойно все возможные ситуации в момент времени t_0 . В виду симметрии достаточно рассмотреть случаи, когда Q находится в одном из слоев $\Sigma(\tau), \Sigma(1), \Sigma(\tau^{-1})$ и $\Sigma(0)$.

I. $Q \in \Sigma(\tau)$ так, что P_1 и Q находятся на соседних вершинах. Многогранник M_{120} является симметричным относительно гиперплоскости $(\tau - 2)x_1 + e_2x_2 + e_3x_3 + e_4x_4 = 0$, которая перпендикулярна ребру с концами (2, 0, 0, 0), E и проходит через его середину.

Положение, возникающее в процессе преследования, когда убегающий и один из преследователей окажутся на соседних вершинах, назовем *S*_I-ситуацией.

Таким образом, в случае I имеет место S_I-ситуация.

II. $Q \in \Sigma(1)$, т.е. $E = (1, e_2, e_3, e_4)$. В этом случае M_{120} будет симметричным относительно гиперплоскости $-x_1 + e_2x_2 + e_3x_3 + e_4x_4 = 0$, перпендикулярной диагонали с концами (2, 0, 0, 0) и E, проходящей через середину этой диагонали. При этом расстояние между преследователем и убегающим равняется 2 как в метрике графа, так и в евклидовой метрике.

Взаимное расположение, в котором убегающий окажется с одним из преследователей на расстоянии 2, назовем *S*_{II}-ситуацией. Таким образом, в рассматриваемом случае реализуется *S*_{II}-ситуация.

III. $Q \in \Sigma(\tau^{-1})$. Без потери общности можно считать $E = (\tau^{-1}, 1, 0, \tau)$. 12 вершин этого слоя $\Sigma(\tau^{-1})$ образуют пустой подграф, т.е. никакая пара вершин не соединена ребром. Поэтому убегающий под натиском P_3 будет вынужден покинуть этот слой. Тогда возможны 4 подслучая.

III₁. Q перейдет на слой $\Sigma(\tau)$. В этом случае Q и P_1 окажутся в S_I -ситуации.

III₂. Q перейдет на слой $\Sigma(1)$. В этом случае Q и P_1 окажутся в S_{II} -ситуации.

III₃. Q двинется в направлении к одной из пяти соседних вершин в слое $\Sigma(0)$.

Чтобы определить стратегию преследователей в случае III₃, понадобится специальное соответствие П между слоями $\Sigma(0)$ и $\Sigma(\tau)$. Для полноты дадим аналитическое описание этого соответствия.

Каждая вершина $\Sigma(\tau^{-1})$ имеет единственную соседнюю вершину из $\Sigma(\tau)$. Это соответствие аналитически выражается формулой

$$\sigma(\tau^{-1}, e_1, e_2, e_3) = (\tau, \tau^{-1}e_1, \tau^{-1}e_2, \tau^{-1}e_3).$$

Далее, $\Sigma(0)$ имеет 12 пятиугольних граней. Вершины каждой такой грани имеют ровно одну общую соседнюю вершину в слое $\Sigma(\tau^{-1})$ (рис. 6).

Например, для вершины $E = (\tau^{-1}, 1, 0, \tau)$ соседний пятиугольник слоя $\Sigma(0)$ состоит из вершин $V_1 = (0, \tau, \tau^{-1}, 1), V_2 = (0, \tau^{-1}, 1, \tau),$ $V_3 = (0, 0, 0, 2), V_4 = (0, \tau^{-1}, -1, \tau), V_5 = (0, \tau, -\tau^{-1}, 1).$

В свою очередь, вершина $(\tau, \tau^{-1}, 0, 1) = \sigma(\tau^{-1}, 1, 0, \tau)$ имеет ровно 5 соседей в этом же слое $\Sigma(\tau)$, а именно, $W_1 = (\tau, 1, \tau^{-1}, 0)$, $W_2 = (\tau, 0, 1, \tau^{-1}), W_3 = (\tau, -\tau^{-1}, 0, 1), W_4 = (\tau, 0, -1, \tau^{-1}), W_5 = (\tau, 1, -\tau^{-1}, 0)$. Искомое соответствие П определяется как $V_j \leftrightarrow W_j$, $j = \overline{1.5}$. Таким образом, П на самом деле устанавливает соответствие между пятиугольными звездами 12 вершин слоя $\Sigma(\tau)$ и 12 пятиугольными гранями слоя $\Sigma(0)$. Оно определятся для других вершин по

Рисунок 6.

следующему правилу. Остальные 11 вершин слоя $\Sigma(\tau^{-1})$ получаются из $E = (\tau^{-1}, 1, 0, \tau)$ четными перестановками $(\tau^{-1}, \tau, 1, 0), (\tau^{-1}, 0, \tau, 1)$ и переменной знаков у координат, равных 1 и τ . Если вершина Fполучается из $E = (\tau^{-1}, 1, 0, \tau)$ каким-то преобразованием, то и соответствующие вершины слоев $\Sigma(0)$ и $\Sigma(\tau)$, составляются из наборов $\{V_i\}$ и $\{W_i\}, j = \overline{1.5}$, тем же преобразованием.

Теперь можно строить способ движения P_1 . Если Q из вершины $(\tau^{-1}, 1, 0, \tau)$ направится к вершине V_j , то преследователю P_1 предписывается двигаться в направлении к вершине W_j .

При этом, как легко в этом убедиться, при достижении убегающим вершины V_j , преследователь P_1 достигнет W_j и произойдет S_{II} -ситуация.

III₄. Наконец, Q может перейти из слоя $\Sigma(\tau^{-1})$ еще и на слой $\Sigma(-\tau^{-1})$. Здесь для него имеется единственная возможность – перейти к вершине $(-\tau^{-1}, 1, 0, \tau)$, симметричной к $E = (\tau^{-1}, 1, 0, \tau)$ относительно гиперплоскости $x_1 = 0$. В этом случае P_1 должен оставаться на месте, а P_2 должен двигаться из вершины (-2, 0, 0, 0) в сторону

вершины $(-\tau, \tau^{-1}, 0, 1)$. Если Q достигнет вершины $(-\tau^{-1}, 1, 0, \tau)$, то P_2 окажется на вершине $(-\tau, \tau^{-1}, 0, 1)$ и реализуется ситуация S_I , в чем легко убедиться прямым вычислением расстояния между этими вершинами.

IV. Теперь рассмотрим последний случай первого этапа: $Q \in \Sigma(0)$. Этот слой содержит 30 вершин, образующих икосододекаэдр [6], который является подграфом M_{120} . Поскольку все вершины равноправны, можно положить $Q = (0, 1, \tau, \tau^{-1})$. Избегая встречи с P_3 , убегающий будет вынужден покинуть эту вершину. При этом он может достигь одной из четырех соседних вершин этого же слоя или одной из двух вершин каждого из слоев $\Sigma(-1), \Sigma(-\tau^{-1}), \Sigma(\tau^{-1}), \Sigma(1)$. Снова переберем эти варианты.

IV₁. Q направится к одной из соседних вершин (0, 0, 2, 0), $(0, \tau, \tau^{-1}, 1)$, $(0, 1, \tau, -\tau^{-1})$, $(0, \tau^{-1}, 1, \tau)$ слоя $\Sigma(0)$. Поставим в соответствие к ним вершины $(\tau, 0, 1, -\tau^{-1})$, $(\tau, \tau^{-1}, 0, 1)$, $(\tau, 1, \tau^{-1}, 0)$, $(\tau, 0, 1, \tau^{-1})$ в этой же последовательности, аналогично тому, как это было сделано при разборе случая III₃. Затем предпишем преследователю P_1 двигаться в сторону соответствующей вершины. Если при этом Q достигнет какую-то вершину из первого списка, то P_1 одновременно с ним достигнет соответствующую вершину из второго списка, в результате P_1 и Q окажутся в S_{II} -ситуации.

IV₂. Q направится к одной из вершин $(\tau^{-1}, 0, \tau, 1), (\tau^{-1}, \tau, 1, 0)$ слоя $\Sigma(\tau^{-1})$. Тогда P_1 должен двигаться в направлении вершин $(\tau, 0, 1, \tau^{-1})$ и $(\tau, 1, \tau^{-1}, 0)$, соответственно. Тогда при достижении убегающим слоя $\Sigma(\tau^{-1})$ преследователь P_1 окажется на слое $\Sigma(\tau)$ и осуществится ситуация S_I .

IV₃. Пусть теперь Q решит перейти к одной из вершин $(1, \tau^{-1}, \tau, 0)$ и (1, 1, 1, 1) слоя $\Sigma(1)$. В этом случае даже без маневра преследователей убегающий попадёт в S_{II} ситуацию с преследователем P_1 , остающимся на месте, т.е. на вершине A.

Случаи перехода Q к вершинам на слоях $\Sigma(-\tau^{-1})$ и $\Sigma(-1)$ симметричны к рассмотренным.

Тем самым первый этап преследования завершается: как бы не маневрировал убегающий, он в некоторый момент времени окажется на вершине, симметричной с одним из преследователей по отношению к некоторой гиперплоскости симметрии M_{120} .

5.2. Эвристические соображения

Тут уместно отметить, почему необходимо «загнать» Q в одну из ситуаций S_I и S_{II} . Дело в том, что за исключением этих двух случаев, многогранник M_{120} не является симметричным относительно гиперплоскости, проходящей через середину диагонали перпендикулярно к ней. Здесь ситуация аналогична с трехмерным кубом: средняя перпендикулярная плоскость большой диагонали не является плоскостью симметрии. Аналогичное явление можно наблюдать и на додекаэдре и икосаэдре – не для каждой диагонали серединная перпендикулярная плоскость служит плоскостью симметрии.

Как бы то ни было, к концу первого этапа хотя бы один из преследователей займет положение, симметричное к убегающему. Пусть это будет в момент времени $t = t_1$. С этого момента начнется второй этап процесса преследования. При этом соответствующему преследователю, которого переобозначим P_1 , предписывается держаться симметричного положения с убегающим, т.е. применять стратегию параллельного преследования [3, 7]. Если убегающий по мере движения попадает на гиперплоскость симметрии, то там он встретится с преследователем P_1 . Это вынуждает убегающего оставаться на одной стороне от гиперплоскости симметрии, что сведет игру к игре на сильно урезанном подграфе $M' = M_{120} \cap \{x_1 > 0\}$, но при этом с двумя преследователям вместо трех.

Несложно было доказать неравенства $N(M_{120}) \ge 3$ и $N(M_{120}) \le 4$. Первоначально авторам казалось, что должно быть $N(M_{120}) = 4$, поскольку M' – все еще достаточно сложный граф с 45 вершинами, содержащий к тому же икосаэдр и додекаэдр в качестве подграфов, для которых N(M) = 3 [1]. Однако доказать возможность уклонения от двух преследователей на M', т.е. от трех – на M_{120} никак не удавалось. Только послойное представление M_{120} позволило заметить особое строение M' и доказать, что два преследователя в состоянии поймать Q на M'.

Еще одно замечание относительно того, почему в игре на додекаэдре N(M) = 3, в то время как в игре на графе M', содержащем додекаэдр в качестве подграфа, можно обойтись двумя преследователями. Это объясняется особым строением графа M'. Чтобы было легче следить за дальнейшим построением стратегии группы преследователей, опишем эти особенности:

1) все вершины слоя $\Sigma(\tau)$ соединены с вершиной (2, 0, 0, 0), что облегчает преследование; здесь ситуация аналогична следующему: в игре на икосаэдре N(M) = 3, но в игре на конусе \hat{M} над икосаэдром, полученном добавлением одной вершины, соединенной ребрами со всеми вершинами, очевидно, $N(\hat{M}) = 2;$

2) вершины слоя $\Sigma(\tau^{-1})$ образуют пустой граф, так что если Qспустится на этот слой, то не может там долго оставаться и будет вынужден возвращаться в верхние слои, позволив тем самым преследователям выиграть темп в терминологии шахматистов;

3) между слоями $\Sigma(\tau^{-1})$ и $\Sigma(\tau)$ существует естественная биекция, такая, что соответствующие вершины вместе с некоторой гранью додекаэдра $\Sigma(1)$ образует пятиугольную бипирамиду (см. рис. 7).

5.3. 2-этап преследования: достижение *S**-ситуации

На этом этапе построения стратегии преследования для удобства за гиперплоскость симметрии примем $x_1 = 0$. Преследователь, занимающий симметричное с убегающим положение, ранее обозначен P₁. В силу отмеченного выше свойства, можно считать, что Q и два других преследователя P_2, P_3 в дальнейшем останутся на подграфе M'.

Преследователю P_3 предписывается продолжить погоню за Q, а преследователю P_2 – занять вершину (2, 0, 0, 0). Если это осуществится в момент времени $t = t_2$, то при необходимости несколько увеличив t₂, можно добиться того, что в этот момент времени Q окажется на вершине, принадлежащей одному из слоев $\Sigma(\tau^{-1}), \Sigma(1)$ и $\Sigma(\tau)$.

Основная цель этого этапа – «загнать» убегающего на слой $\Sigma(1)$. Состояние, в котором P_2 находится на вершине A, а Q – на одной из вершин слоя $\Sigma(1)$, будем называть S^{*}-ситуацией.

I. Пусть $Q \in \Sigma(\tau^{-1})$. Никакая пара вершин этого слоя не соединена ребром между собой, поэтому под натиском P_3 убегающий Q будет вынужден перейти к вершине из другого слоя. Если он направится к слоям $\Sigma(0)$ и $\Sigma(-\tau^{-1})$, то будет пойман преследователем P_1 . Если перейдет к слою $\Sigma(1)$, то возникиет требуется S^{*}-ситуация. Переход к слою $\Sigma(\tau)$ рассмотрим вместе со случаем, когда Q в момент времени $t = t_2$ уже находился в этом слое.

Рисунок 7.

II. Итак, пусть $Q \in \Sigma(\tau)$ в какой-то момент времени $t = t_2$. Если после этого Q решает перейти к другой вершине $\Sigma(\tau)$, то такие переходы не могут долго повторяться, так как будет пойман преследователем P_3 , поэтому он вынужден перейти к одному из слоев $\Sigma(1)$ или $\Sigma(\tau^{-1})$. Переход на слой $\Sigma(1)$ означает возникновение S^* -ситуации. Рассмотрим случай, когда Q опустится на слой $\Sigma(\tau^{-1})$.

Казалось бы, убегающий сможет бесконечное число раз переходить из слоя $\Sigma(\tau)$ на слой $\Sigma(\tau^{-1})$ и обратно. Но при таком движении Q преследователь P_2 легко осуществит его поимку при возвращении из слоя $\Sigma(\tau^{-1})$ на слой $\Sigma(\tau)$. В самом деле, согласно графометрии M_{120} , оба слоя $\Sigma(\tau)$, $\Sigma(\tau^{-1})$ – икосаэдры, причем каждая вершина одного из них соединена ребром лишь с одной вершиной другого. Следовательно, если Q из слоя $\Sigma(\tau^{-1})$ направится к вершине $B \in \Sigma(\tau)$, то P_2 может также направляться на ту же вершину. Поэтому Q будет вынужден перейти из слоя $\Sigma(\tau^{-1})$ на слой $\Sigma(1)$, что означает реализацию S^* -ситуации.

Таким образом, во всех случаях к концу второго этапа реализуется $S^{\ast}\mbox{-}$ ситуации.

5.4. Заключительный этап преследования

Итак, пусть в некоторый момент времени $t = t_3$ имеет место S^* ситуация, в которой Q находится на какой-то вершине $B \in \Sigma(1), P_2$ – на вершине (2, 0, 0, 0), а P_3 по следам преследует Q. Следовательно, Qне может долго находится на одной вершине слоя $\Sigma(1)$ и должен двигаться в сторону одной из 12 соседних вершин. Согласно графометрии M_{120} эти вершины по три принадлежат слоям $\Sigma(0), \Sigma(\tau^{-1}), \Sigma(1)$ и $\Sigma(\tau)$.

Переход к слою $\Sigma(0)$ сразу исключается. Также можно не рассматривать случай, когда Q достигнет какую-то из вершин слоя $\Sigma(\tau)$, так как он будет пойман преследователем P_2 – для этого ему достаточно спуститься к той вершине слоя $\Sigma(\tau)$, куда направился убегающий.

Если Q двинется в сторону слоя $\Sigma(\tau^{-1})$, скажем по ребру BA_3 , то преследователю P_2 предпишем двигаться в сторону вершины C_3 слоя $\Sigma(\tau)$, которая является единственной соседней к A_3 из $\Sigma(\tau^{-1})$. Поскольку никакая пара вершин слоя $\Sigma(\tau^{-1})$ не образует ребра, то Q будет вынужден перейти из $\Sigma(\tau^{-1})$ к слою $\Sigma(\tau)$ или $\Sigma(1)$. В обоих случаях Q будет пойман преследователем P_2 .

Таким образом, остается разобрать такой случай: Q перейдет из вершины B к одной из соседних вершин B_1 , B_2 , B_3 этого же слоя (рис. 8). В этом случае преследователю P_2 предпишем двигаться в сторону соответствующей из вершин C_4, C_5, C_6 . Это соответствие определяется по следующему правилу. Вершина B_i явлется общей для трех граней додекаэдра $\Sigma(1)$. При этом вершин B является общей для двух из этих граней, но, в отличие от B_i , не является вершиной для третьей грани. Пусть это будет грань Λ_i . Согласно графометрии, одна из вершин $\Sigma(\tau)$, скажем C_{i+3} , соединена со всеми вершинами Λ_i . Именно эта вершина C_{i+3} и ставится в соответствие к B_i , i = 1, 2, 3(см. рис. 8).

Рисунок 8.

Пусть $t = t_4$ – момент времени, когда Q достигнет, скажем, вершины B_1 . В этой ситуации возможны три случая дальнейших действий убегающего Q:

1-случай: Из вершины B_1 убегающий Q направится к одной из соседних вершин C_1 и C_2 слоя $\Sigma(\tau)$ (третья соседняя вершина C_4 занята преследователем P_2). В обоих случаях Q будет пойман ввиду того, что C_1 и C_2 являются соседними к C_4 .

2-случай: Q попытается возвратиться из B_1 к вершине B. Поскольку P_3 преследует его по следам, то такой маневр Q, т.е. переход из вершины B_1 к одной из соседних вершин в слое $\Sigma(1)$ не может продолжаться дольше, чем диаметр M', иначе Q будет пойман преследователем P_2 .

3-случай: Q движется в сторону слоя $\Sigma(\tau^{-1})$. В слое $\Sigma(\tau^{-1})$ вершина B_1 имеет три соседние вершины, а именно A_1, A_2 и A_4 , которые являются соседними также к вершинам C_1, C_2 и C_4 , соответственно (см. 1-случай). Если Q достигнет вершины A_4 , то будет пойман преследователем P_2 (A_4 и C_4 – соседние вершины). Остается случай, когда Q направится в сторону одной из вершин A_1 и A_2 , которым соответствуют вершины C_1 и C_2 слоя $\Sigma(\tau)$. В этих случаях преследователю P_2 предпишем двигаться к соответствующей из вершин C_1 и C_2 . Пусть Q достигнет A_2 . Тогда одновременно с ним P_2 достигнет C_2 (рис. 8). В результате точки P_2 и Q окажутся в вершинах пятиугольной бипирамиды (рис. 7) и преследование Q успешно завершается: либо Q движется по ребру этой бипирамиды, и будет пойман преследователем P_2 , либо Q будет вынужден попасть в слой $\Sigma(0)$, где его встретит P_1 . Теорема доказана полностью.

6. Заключение

К нашему огорчению, в самом начале работы над этой частью исследования, А.Ш. Кучкаров, внесший существенный вклад в предыдущие части, скоропостижно скончался. Мы посвящаем статью его памяти.

Отметим, что точное значение $N(M_{600})$ нам пока неизвестно, можем лишь утверждать $4 \leq N(M_{600}) \leq 6$.

Авторы выражают свою признательность О.С. Ахмедову за полезное обсуждение и помощь при построении рисунков.

СПИСОК ЛИТЕРАТУРЫ

- Azamov A.A., Kuchkarov A.Sh., Holboyev A.G. The pursuitevasion game on the 1-skeleton graph of regular polyhedron. I // Automation and Remote Control. 2017. V. 78. N. 4. P. 754–761.
- Azamov A.A., Kuchkarov A.Sh., Holboyev A.G. The pursuitevasion game on the 1-skeleton graph of regular polyhedron. II // Automation and Remote Control. 2018. V. 78. N. 10. P. 345–351.

- Azamov A.A., Samatov B.T. П-strategy. An elementary introduction to the theory of differential games. Tashkent: National University of Uzbekistan, 2000.
- 4. Berger M. Geometry. Volume 1. Berlin: Springer-Verlag, 1987.
- 5. Coxeter H.S.M. *Introduction to geometry*. New York: John Wiley and Sons, Inc. 1961.
- Malkevitch J. Shaping space: a polyhedral approach // Senechal M., Flenk G.– Boston: Birkhauser, 1988. P. 80–92.
- Petrosjan L.A. Differential games of pursuit. World Scientific Publisher, 1993.

THE PURSUIT-EVASION GAME ON THE 1-SKELETON GRAPH OF THE REGULAR POLYHEDRON. III

Abdulla A. Azamov, Institute of Mathematics, Doc. Acad. (abdulla.azamov@gmail.com),

Atamurat Sh. Kuchkarov,

Azamat G. Holboyev, Tashkent State Pedagogical University, Assistant Professor (azamatholboyev@gmail.com).

Abstract: It is considered a game between a group of n pursuers and one evader moving with the same maximal speed along 1-skeleton of a given regular polyhedron. In this paper it is considered the case of the regular polyhedrons with 24 and 120 vertices in the space \mathbb{R}^4 . It is proven that if $n \leq 2$, then the evader wins in the game, and to the evader, if $n \geq 3$ then the game finishes successfully for the group of pursuers.

Keywords: pursuit-evasion game, approach problem, evasion problem, positional strategy, counter strategy, exact catch, regular polyhedron with 24 vertices, regular polyhedron with 120 vertices, one-dimensional graph.