
ЮБИЛЕИ И ДАТЫ

ЮРИЙ ВАСИЛЬЕВИЧ ЗАИКА

(к 50-летию со дня рождения)

Юрий Заика родился 27 июня 1960 г. в с. Ярово Сорокского района Молдавской ССР, где родители нашли временное пристанище после окончания Херсонского сельскохозяйственного и Сумского педагогического институтов, предпочтя аспирантской карьере в разных концах Украины совместное преодоление житейских проблем. Через несколько лет семья переехала в г. Могилёв-Подольский Винницкой области, где Юрий и закончил среднюю школу с золотой медалью. «Очкариком» не числился активно занимался волейболом: член детской и юношеской сборной города, признавался лучшим защитником и универсальным игроком на первенствах области, первый взрослый разряд. В 1977 г. после путешествия «Киев-Москва-Ленинград» выбор пал на Ленинград, захотелось поступить в Кораблестроительный институт и вырваться с берегов Днестра на океанские просторы. Но поезд пришел рано, и до открытия метро морской офицер, узнав, что нравится математика, уговорил отнести документы в университет. Так Юрий Заика стал студентом факультета прикладной математики - процессов управления ЛГУ. Студенческие годы пролетели: учеба (сначала у Смольного в здании бывшего института благородных девиц, потом в Петергофе), белые ночи, сражения с «вузами-противниками» на первенстве Ленинграда по волейболу... Далее уже лишь сухие вехи биографии.

Заика Юрий Васильевич в 1982 г. окончил Ленинградский госуниверситет с красным дипломом (кафедра механики управляемого движения). Затем — аспирантура под руководством профессора Н. Е. Кирина, заслуженного деятеля науки РФ, профессионала и Учителя, известного

специалиста в области вычислительных методов теории оптимального управления. После защиты кандидатской диссертации в 1985 г. («Сопряженные задачи теории наблюдаемости динамических систем», 01.01.09 — математическая кибернетика) Ю. В. Заика работал в Московском авиационном институте (филиал Восход, Байконур). Отмечен грамотой командования космодрома Байконур за успешную научную работу. С 1991 г. — доцент, затем профессор математического факультета Петрозаводского госуниверситета. Окончил докторантуру СПбГУ (под рук. чл.-корр. РАН В. И. Зубова, одного из признан-

ных лидеров в области механики, теории устойчивости и управления). Докторскую диссертацию защитил в 1998 г. в Институте информатики и автоматизации РАН («Интегральные операторы наблюдения и идентификации динамических систем», 05.13.16). Аттестат профессора по кафедре математического моделирования систем управления получил в 2002 г. С 1999 г. Ю. В. Заика работает заведующим лабораторией моделирования природно-технических систем Института прикладных математических исследований КарНЦ РАН. Традиционно тематика научных исследований лаборатории связана с моделированием и оптимизацией структуры и параметров энергетических, транспортных систем, а также с задачами вычислительного материаловедения.

Научные интересы Ю. В. Заики: интегральные операторы наблюдения нелинейных динамических систем; оценивание функционалов на решениях систем с запаздыванием в условиях неопределенности; краевые задачи взаимодействия водорода с конструкционными материалами с нелинейными динамическими граничными условиями и подвижными границами раздела фаз; методы решения экстремальных задач в химической термодинамике. В последние 15 лет научные исследования сконцентрированы именно на последних из упомянутых задачах, которые имеют большое теоретическое и практическое значение. Интерес к водороду вызван в основном перспективами экологически чистой энергетики и технологическими проблемами безопасности хранения и транспортировки углеводородного сырья. Это особенно актуально для Северного региона Российской Федерации, в том числе и для Республики Карелия. Возникают, в частности, проблемы защиты конструкционных материалов от водородной коррозии. Вычислительное материаловедение позволяет существенно сократить время и материальные затраты на экспериментальные исследования, в особенности это касается экстремальных условий эксплуатации материалов в водородосодержащей среде. Помимо прямых задач моделирования возникает потребность в устойчивых вычислительных алгоритмах решения обратных задач параметрической идентификации моделей по экспериментальным данным. Это позволяет прогнозировать эксплуатационные свойства новых материалов в условиях все возрастающих требований экологической безопасности.

Ю. В. Заика является автором более 100 научных работ, ряд из которых опубликован в веду-

щих российских и зарубежных журналах: Дифференциальные уравнения, Известия РАН (Теория и системы управления), Математический сборник, Математические заметки, Математическое моделирование, Журнал вычислительной математики и математической физики, Журнал технической физики, Фундаментальная и прикладная математика, Заводская лаборатория, Journal of Alloys and Compounds, NATO Science Series (II. Math., Phys. and Chem.), Обозрение прикладной и промышленной математики, Материаловедение, International Journal Mathematics and Mathematical Sciences, Applied Mathematical Modelling и др. Результаты докладывались на многочисленных российских и международных конференциях.

Ю. В. Заика ведет большую педагогическую работу. Под его руководством защищаются дипломные работы, магистерские и кандидатские диссертации. Студенты имеют возможность работать в лаборатории, выполняя научные исследования по различным темам, выступать с докладами на представительных научных форумах (среди достижений - лучшие доклады в секции «математическое моделирование» международных конференций «Ломоносов» в МГУ, пленарный доклад на форуме «Всемирный день физики в МГУ», 2005-2007). Работы учеников отмечены также грантами Конкурсного центра фундаментального естествознания при СПбГУ (дипломный и кандидатский проекты), грантами Федеральной целевой программы «Интеграция», Российского фонда фундаментальных исследований («Мобильность молодых ученых»), Фонда содействия отечественной науке («Лучшие аспиранты» и «Кандидаты наук» РАН), премией по поддержке талантливой молодежи Министерства образования и науки Российской Федерации (приоритетный национальный проект «Образование»). Трое учеников успешно защитили кандидатские диссертации, двое продолжают учебу в аспирантуре. Ю. В. Заика член диссертационного совета в ПетрГУ, в 2006-2007 гг. - председатель Государственной аттестационной комиссии на физико-техническом факультете ПетрГУ, с 2008 г. – на математическом факультете.

Ю. В. Заика являлся членом Оргкомитета I, II и III Всероссийской школы молодых ученых «Математические методы в экологии» (Петрозаводск, 2001, 2003, 2008). В 2005–2006 гг. на базе ИПМИ КарНЦ РАН (Ю. В. Заика — сопредседатель Оргкомитета) организованы и проведены совместно с Росатомом, Российским федераль-

ным ядерным центром—ВНИИЭФ (г. Саров), СПбГУ и ПетрГУ Международные школы молодых ученых «Взаимодействие водорода с конструкционными материалами: эксперимент и математическое моделирование». Лекторы — ведущие специалисты из России, США (Аргоннская и Сандийские национальные лаборатории), Норвегии. Ю. В. Заика — член международного Программного комитета школы молодых ученых «Взаимодействие изотопов водорода с конструкционными материалами», член Американского математического общества, референт журнала «Mathematical Review».

В 2005 г. Ю. В. Заика награжден Почетной грамотой КарНЦ РАН за значительный вклад в развитие фундаментальных и прикладных научных исследований. В 2006—2007 гг. отмечен грантом Фонда содействия отечественной науке в номинации «Доктора наук РАН».

В 2010 г. Ю. В. Заике присвоено почетное звание «Заслуженный деятель науки Республики Карелия».

В настоящее время Ю. В. Заика руководит проектом в рамках программы Отделения математических наук РАН «Вычислительные и информационные технологии решения больших задач» (Институт прикладной математики им. М. В. Келдыша РАН), исследования поддержаны Российским фондом фундаментальных исследований.

Коллектив Института прикладных математических исследований КарНЦ РАН поздравляет юбиляра и желает ему дальнейших творческих успехов.

Зам. директора ИПМИ КарНЦ РАН по научной работе к. т. н., с. н. с. А. Д. Сорокин

СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ Ю. В. ЗАИКИ

1992. Дискретная стабилизация динамических систем с неполной обратной связью // Вестник Санкт-Петербургского университета. Серия 1. Вып. 3. С. 24–31.

Стабилизация динамических систем с неполной обратной связью // Динамика неоднородных систем. М.: ВНИИ системных исследований. Вып. 14. С. 37–47.

1993. Нули голоморфных функций и интегральные операторы наблюдения динамических систем // Математический сборник. Т. 184. № 12. С. 65–86.

Задача наблюдения динамических систем // Методы оценивания и управления в динамических системах. Изд-во СПбГУ. С. 85–143, 254–276.

1995. Оценки функционалов на решениях возмущаемых систем с запаздыванием по неполной обратной связи // Известия АН. Теория и системы управления. № 1. С. 99–108.

1996. Разрешимость уравнений модели переноса газа сквозь мембраны с динамическими граничными условиями // Журнал вычислительной математики и математической физики. № 12. С. 108–120.

Оценки функционалов на решениях возмущаемых систем с запаздыванием // Вопросы механики и процессов управления. Вып. 17. Изд-во СПбГУ. С. 67–78.

Определение параметров водородопроницаемости металлов методом сопряжен. уравнений // Заводская лаборатория (диагностика материалов). \mathbb{N} 1. С. 18–26. (Совместно с И. Е. Габисом).

1998. Идентификация модели водородопроницаемости металлов // Журнал технической физики. Т. 68. № 11. С. 38–42.

1999. Устойчивые дискретные программы наблюдений в аналитических динамических системах // Математические заметки. Т. 65. № 6. С. 194–201.

2000. Параметрическая идентификация модели переноса водорода сквозь двухслойные мембраны // Журнал технической физики. Т. 70. Вып. 5. С. 32–39.

Идентификация модели переноса газа сквозь слоистые мембраны // Обозрение прикладной и промышленной математики. Т. 7. Вып. 1. С. 60–74.

2001. Оценка параметров водородопроницаемости металлов методом концентрационных импульсов // Заводская лаборатория. № 5. С. 23–32.

Параметрическая регуляризация модели водородопроницаемости с динамическими граничными условиями // Математическое моделирование. Т. 13. № 11. С. 69–87.

Интегральные операторы наблюдения нелинейных динамических систем // Фундаментальная и прикладная математика. Т. 7. № 3. С. 735–760.

Управление и алгоритмы наблюдения и идентификации // Петрозаводск: Изд-во ПетрГУ. 164 с.

2002. Определение параметров переноса водорода сквозь мембраны методом концентрационных импульсов // Известия вузов. Физика. № 1. С. 81–87.

2003. Nonlinear dynamical boundary-value problem of hydrogen thermal desorption // International Journal of Mathematics and Mathematical Sciences. N 23. P. 1447–1464. (With I. A. Chernov).

Моделирование динамики взаимодействия водорода с конструкционными материалами // Обозрение прикладной и промышленной математики. Т. 10. Вып. 1. С. 11–24. (Совместно с И. А. Черновым).

Integral observability operators of nonlinear dynamical systems // International Journal of Mathematics and Mathematical Sciences. N 55. P. 3519–3538.

Interval estimates of functionals in time-delay systems with uncertainty // International Journal of

Mathematics and Mathematical Sciences. N 56. P. 3573–3590.

2004. Identification of a hydrogen transfer model with dynamical boundary conditions // International Journal of Mathematics and Mathematical Sciences. N 24. P. 195–216.

Modelling of TDS-spectra of dehydrating // Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series II: Math., Phys. and Chem. Vol. 172. Kluwer Academic Publishers, Netherlands. P. 415–426. (With I. A. Chernov).

2005. Studying hydrogen permeability by method of concentration pulses // Journal of Alloys and Compounds. V. 404–406. P. 279–283. (With V. Popov, I. Gabis, N. Sidorov).

Modeling high-temperature TDS-Spectra peaks of metal-hydrogen systems // Journal of Alloys and Compounds. V. 404–406. P. 332–334. (With I. Chernov, I. Gabis).

2006. Моделирование высокотемпературного пика ТДС-спектра дегидрирования // Математическое моделирование. Т. 18, № 4. С. 100–112. (Совместно с Н. И. Родченковой).

Исследование водородопроницаемости методом концентрационных импульсов // Материаловедение. № 6. С. 2–9. (Совместно с В. В. Поповым, И. Е. Габисом).

of 2007. TDS-spectra hvdride powder decomposition: modelling with size reduction effect // NATO Security through Science, Series A, Hydrogen Materials Science and Chemistry of Carbon 619–631. Nanomaterials, Springer. P. (With N. I. Rodchenkova).

2008. Диффузионный пик ТДС-спектра дегидрирования: краевая задача с подвижными

границами // Математическое моделирование. Т. 20, № 11. C. 67–79. (Совместно с Н. И. Родченковой).

Modelling of diffusion TDS-spectrum peak of dehydriding with size reduction and heat absorption effects // NATO Science for Peace and Security Series (C), Carbon Nanomaterials in Clean Energy Hydrogen Systems, Springer. P. 863–878. (With N. I. Rodchenkova).

Algoritms of parameters estimation of hydrogen permeability model // NATO Science for Peace and Security Series (C), Carbon Nanomaterials in Clean Energy Hydrogen Systems, Springer. P. 403–414. (With E. P. Bormatova).

2009. Разностная схема для краевой задачи ТДС-дегазации с динамическими граничными условиями // Ученые записки ПетрГУ. Серия Естественные и технические науки. № 7 (101). С. 65–70. (Совместно с Е. К. Костиковой).

Boundary-value problem with moving bounds and dynamic boundary conditions: diffusion peak of TDS-spectrum of dehydriding // Applied Mathematical Modelling, Elsevier. V. 33, N 10. P. 3776–3791. (With N. I. Rodchenkova).

2010. Параметрическая идентификация модели водородопроницаемости по временам запаздывания // Журнал технической физики. Т. 80. Вып. 3. С. 31—39. (Совместно с Е. П. Борматовой).

Parametric identification of hydrogen permeability model by delay times and conjugate equations // Int. Journal of Hydrogen Energy, Elsevier, in press. (With E. P. Bormatova).

Numerical modelling of hydrogen desorption from cylindrical surface // Int. Journal of Hydrogen Energy, Elsevier, in press. (With N. I. Rodchenkova).