УДК 528.8+681.3:574.4

ГЕОИНФОРМАЦИОННАЯ МОДЕЛЬ НАЗЕМНЫХ ЭКОСИСТЕМ ХРЕБТА МААНСЕЛЬКЯ (РАЙОН ОЗ. ПААНАЯРВИ)

П. Ю. Литинский

Институт леса Карельского научного центра РАН

Приводятся результаты создания геоинформационной модели экосистем таежного низкогорья. Показано отражение высотной зональности в спектральном пространстве снимка Landsat 7.

Ключевые слова: геоинформационное моделирование, таежные экосистемы, дистанционное зондирование.

P. Yu. Litinskiy. A GEOINFORMATION MODEL OF THE MAANSELKÄ RIDGE TERRESTRIAL ECOSYSTEMS

A geoinformation model of the Maanselkä low-montane boreal ecosystems is described. We show how altitudinal zonality is reflected in the Landsat 7 image spectral space.

Key words: geoinformation modeling, boreal ecosystems, remote sensing.

Введение

Первый фрагмент геоинформационной модели наземных экосистем северотаежной подзоны Восточной Фенноскандии создан на основе космического снимка, включающего территорию от Белого моря до отрогов хребта Маанселькя [Литинский, 2012]. В данном сообщении приводятся результаты создания по той же методике модели территории, прилегающей к первому фрагменту с запада. Описываются лишь категории земной поверхности, характерные для низкогорий (в районе оз. Паанаярви), поскольку природные комплексы на остальной части в основном аналогичны таковым первого фрагмента. Показан принцип совмещения спектральных моделей соседних сканерных снимков.

Объекты и методика

Модель формировалась на основе снимка сканера Landsat 7 от 26 июля 2000 г., сцена

14 витка 188 (показан сплошной линией на рис. 1). Далее для краткости снимки будут обозначаться в виде *виток/сцена*. Для исследования динамики растительного покрова использовался снимок Landsat TM 187/14 от 8 июня 1988 г., перекрывающий две трети снимка 188/14 с востока.

Снимок 188/14 был трансформирован в проекцию UTM, зона 36 (оригинал находится в 35-й зоне) по контрольным точкам (тип трансформации – полигональная 2 степени), поскольку изменение проекции модулем **r.proj** GRASS не обеспечивает удовлетворительного пространственного совмещения снимков. Для создания первого фрагмента модели использовался снимок Landsat 7 186/14-15 (показан пунктиром на рис. 1). Сравнение сигнатур одних и тех же участков на перекрывающейся области снимков показало, что интенсивность сигнала по всем каналам отличается лишь на 1–2 процента (рис. 2), еще меньше разница в индексе MSI. Поэтому для формирования

модели спектрального пространства снимка 188/14 использовались те же параметры (эйгенвекторы компонент), что и для снимка 186/14 [Литинский, 2012, табл. 1]. Перекрывающаяся область снимков использовалась для «переноса» модели спектрального пространства снимка 186/14 на снимок 188/14 – классифицированный растр первого снимка использовался как растр ключевых участков для второго.

Рис. 1. Локализация сцен сканерных снимков

Рис. 2. Сигнатуры одних и тех же участков различных категорий на снимках 188/14 (пунктирные линии) и 186/14 (сплошные). Ось *х* – каналы сканера, *у* – уровень сигнала (значение байта)

Цифровая модель высот (DEM) сформирована путем интерполяции векторизованных горизонталей топокарты М 1:200 000. Области затенения определялись модулем GRASS **r.sunmask**.

98

Результаты

Общая конфигурация моделей спектрального пространства снимков 188/14 и 186/14 одинакова, имеется лишь небольшой сдвиг сегментов в плоскости компонент в сторону уменьшения их значений (рис. 3). Наибольшее значение сдвига – в области «лесных» категорий (классы: 1 – сосняк черничный, 2 – сосняк брусничный, 5 – низкополнотные хвойные, 10 – свежая вырубка).

Рис. 3. Фрагмент модели спектрального пространства снимка 188/14. Тонкими линиями показаны сегменты спектральных классов некоторых равнинных категорий, пунктирными – положение тех же классов на снимке 186/14-15. Сплошная стрелка показывает траекторию высотной зональности экосистем от подножья к вершине возвышенностей, пунктирная – траекторию лесовозобновления. Оси *x* и *y* – соответственно первая и вторая главные компоненты логарифмированной матрицы снимка. Третья размерность модели – индекс MSI, а также названия классов приведены в таблице

Перенесенная со снимка 186/14-15 спектральная модель соответствует экосистемам, расположенным преимущественно на высоте до 300 м над уровнем моря и южнее 66° с. ш., их описание приведено в [Литинский, 2012]. Выше данной отметки и к северу отмечается появление спектральных классов, отсутствующих на снимке 186/14-15. Они представляют лесные экосистемы, характерные только для низкогорий, прежде всего, это низкопроизводительные и низкополнотные еловые и березово-еловые леса.

Спектральный класс	Индекс MSI, %	Высота над уровнем моря, м	Класс экосистем
91	50-60	300–350	ельники черничные 8Е1С1Б, полнота 0,5–0,6
92	50-60	350–400	то же, полнота 0,3–0,4
93	55–65	400-500	елово-березовое редколесье
94	60-70	>500	горные тундры
95	45-55	300-400	осоково-сфагновые болота
96	80-95	300-500	скальные обнажения
97	50-60	300–350	вырубка ельника (класса 61)

Спектральные классы экосистем низкогорий

По данным наземных исследований, максимальной полноты и производительности эти лесные сообщества достигают в логовых местообитаниях (вдоль ложбин стока), а также на склонах с полнопрофильными почвами и проточным увлажнением, на отметках 300-350 м. Полнота и производительность лесов снижается с увеличением высоты, и к отметке примерно 400 м они сменяются предтундровым березово-еловым редколесьем. На вершинах наиболее крупных возвышенностей (500 м и более) отмечены участки горных тундр. На склонах в депрессиях кристаллического фундамента сформировались олиготрофные осоково-сфагновые болота с тонкой торфяной залежью. Мезотрофные болота встречаются лишь небольшими фациями [Волков и др., 1995; Громцев, Литинский, 2003].

Описанная высотная зональность экосистем четко отражается в спектральном пространстве снимка (классы 91–94 по стрелке на рис. 3 и в табл.). Фактически траектория соответствует снижению полноты древостоя и затем – количества фотосинтезирующей биомассы в кустарниковой растительности. Далее по стрелке расположены скальные обнажения (кл. 96), на местности они встречаются по всему склону, так же, как и олиготрофные болота (кл. 95).

Вырубки в низкогорьях ведутся лишь в самых высокополнотных ельниках (класс 91). Траектория возобновления показана пунктиром, т. к. выявить ее полностью не удалось – имеется только одна достоверная временная отметка давностью около 10 лет (класс 97).

Экосистемы низкогорий обладают почти уникальными сигнатурами, и пересечения в спектральном пространстве с сегментами равнинных классов незначительны. В плоскости осей компонент низкогорные болота занимают ту же область, что и равнинные олиготрофные, но у последних существенно меньшее значение индекса MSI. Частично перекрываются некоторые сегменты низкогорных ельников с сегментами равнинных классов (в основном в экотонных зонах), разделяются такие участки с использованием DEM.

Следует отметить, что имеющаяся в наличии DEM весьма генерализована по сравнению со сканерным снимком. Это не позволяет учитывать при формировании модели спектрального пространства изменения коэффициента отражения на склонах различной крутизны и экспозиции. По всей вероятности, фактические границы между классами 90–94 на южных склонах проходят несколько выше полученных при обработке снимка, а на северных, наоборот, ниже.

Степень генерализации DEM сказывается также и при определении зон затенения – сглаживаются мелкие элементы рельефа (трещины, каньоны, распадки). Затененных при высоте солнца в момент съемки участков не выявлено. Расчет не учитывает также возможного наличия древостоя. По этим причинам вероятно, что некоторая часть спектрального класса 91 фактически является тенью от стены леса у подножья склонов северной экспозиции. В большинстве случаев такие участки представляют собой русла ручьев, а также заболоченные и логовые ельники.

Уменьшение такого рода погрешностей и неопределенностей возможно лишь при использовании значительно более детальной DEM, полученной методом лазерного сканирования. Но доля таких участков составляет, как показывают приблизительные расчеты, менее одного процента от общей площади низкогорных классов.

Заключение

В процессе создания геоинформационной модели описываемого фрагмента отработана методика переноса модели спектрального пространства с одного сканерного снимка на другой. Определены спектральные характеристики основных классов низкогорных экосистем. Установлено, что в спектральном пространстве снимка, наряду с траекториями условий водно-минерального питания и антропогенных сукцессий лесных экосистем, существует и траектория высотной зональности, что позволит в дальнейшем более точно моделировать экологические характеристики низкогорий как компонентов биосферы.

Литература

Волков А. Д., Громцев А. Н., Еруков Г. В. и др. Экосистемы ландшафтов запада северной тайги (структура, динамика). Петрозаводск: КарНЦ РАН, 1995. 194 с.

Громцев А. Н., Литинский П. Ю. Леса района национального парка «Паанаярви»: природные особенности, современное состояние, планирование

СВЕДЕНИЯ ОБ АВТОРЕ:

Литинский Петр Юрьевич

старший научный сотрудник, к. с.-х. н. Институт леса Карельского научного центра РАН ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910 эл. почта: litinsky@krc.karelia.ru тел.: (8142) 768160 использования // Природа национального парка «Паанаярви». Труды КарНЦ РАН. Петрозаводск: КарНЦ РАН, 2003. Вып. 3. С. 15–19.

Литинский П. Ю. Геоинформационная модель наземных экосистем северотаежной подзоны восточной Фенноскандии // Труды КарНЦ РАН. Сер. «Биогеография». Петрозаводск: КарНЦ РАН, 2012. Вып. 13, № 1. С. 3–15.

Litinskiy, Pyotr

Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences

11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia e-mail: litinsky@krc.karelia.ru tel.: (8142) 768160