КРАТКИЕ СООБЩЕНИЯ

УДК 582.632:581.132:581.52

ИССЛЕДОВАНИЯ ФОТОСИНТЕЗА И ТРАНСПИРАЦИИ У КАРЕЛЬСКОЙ БЕРЕЗЫ И БЕРЕЗЫ ПОВИСЛОЙ

В. К. Болондинский¹, Е. С. Холопцева²

При оптимальных внешних условиях и хорошей оводненности почвы во время интенсивного роста побегов проводили исследования газообмена разновозрастных листьев саженцев березы повислой (Betula pendula) и березы карельской (Betula pendula var. carelica). Средние величины фотосинтеза у карельской березы (БК) и у березы повислой ($Б\Pi$) составляли – 11,39 и 12,30 мкмоль м $^{-2}$ с $^{-1}$ соответственно, максимальные величины – 28,3 и 21,8 мкмоль м² с¹. Различия в транспирации составили 1,97 и 2,42 ммоль м 2 с 1 у БК и БП соответственно. Рассчитывали устьичную и мезофильную проводимость, сопротивление диффузии СО, и продуктивность транспирации. При достаточном количестве почвенной влаги у растений березы обеих форм имелись достоверные различия в средних величинах устьичной и мезофильной проводимости. Устьичная проводимость у листьев БК в среднем была на 25 % ниже, чем у $Б\Pi$. Фотосинтез у БK оставался на уровне, близком к $Б\Pi$, благодаря более высокой мезофильной проводимости. Продуктивность транспирации была у БК на 32 % выше, чем у БП. Снижение интенсивности фотосинтеза у листьев, заканчивающих рост, по сравнению с уже сформировавшимися было связано с уменьшением мезофильной проводимости, а также устьичной проводимости и содержания хлорофилла.

К лючевые слова: Betula pendula, CO_2 -газообмен, транспирация, устьичная проводимость.

V. K. Bolondinskii, E. S. Kholoptseva. RESEARCH INTO THE PHOTOSYNTHESIS AND TRANSPIRATION IN KARELIAN BIRCH AND SILVER BIRCH

Gas exchange in leaves of different age was studied in silver birch (*Betula pendula*) and Karelian birch (*Betula pendula var. carelica*) seedlings during intensive shoot growth under optimal external conditions and adequate soil water content. Average photosynthesis in Karelian birch (*KB*) and silver birch (*SB*) was 11.39 and 12.30 µmol·m⁻²·sec⁻¹, respectively, the maximums being 28.3 and 21.8 µmol·m⁻²·sec⁻¹. The differences in transpiration were 1.97 and 2.42 µmol·m⁻²·sec⁻¹ in *KB* and *SB*, respectively. We estimated stomatal and mesophyll conductance, CO₂ diffusion resistance, and transpiration efficiency. Where soil moisture was sufficient, the two birch forms differed reliably in terms of stomatal and mesophyll conductance means.

¹ Институт леса Карельского научного центра РАН

² Институт биологии Карельского научного центра РАН

Stomatal conductance in *KB* leaves was on average 25 % lower than in *SB*. Photosynthesis in *KB* remained at a level similar to that in *SB* owing to higher mesophyll conductance. Transpiration efficiency was 32 % higher in *KB* than in *SB*. Photosynthesis in the leaves ceasing to grow was less intensive than in the fully developed leaves because of lower mesophyll conductance, as well as stomatal conductance and chlorophyll content.

Keywords: Betula pendula, CO, exchange, transpiration, stomatal conductance.

Введение

На СО,-газообмен растений помимо внешних факторов среды оказывают влияние также внутренние факторы, эдафические условия. Фотосинтез в значительной степени определяется фенологической фазой развития растения и соответствующим этой фазе запросом на ассимиляты. Транспирация листа зависит в основном от двух факторов: дефицита водяного пара в воздухе и устьичной проводимости. Как в природных условиях [Болондинский, 2010; Болондинский, Виликайнен, 2011], так и в факторостатных [Дроздов и др., 1995] не зафиксировано существенной разницы в средних величинах фотосинтеза у БК и БП. При этом известно, что ростовые процессы у БК по сравнению с БП снижены, и у первой происходит торможение камбиальной деятельности [Новицкая, 2008]. У БК одной из основных причин нарушений нормальной ритмики камбиальной активности и, как следствие, образования аномальной древесины является избыточное количество транспортных сахаров в камбиальной зоне [Галибина и др., 2011]. Продукты фотосинтеза поступают в камбиальную зону по проводящим элементам флоэмы в виде транспортных сахаров. Взаимодействие между источником ассимилятов и потребляющими их в процессе роста органами имеет сложный характер. Превышение концентрации ассимилятов в точках роста выше нормы не бывает продолжительным. Часто, если ростовые процессы замедляются, через систему прямых и обратных связей происходит репрессорное воздействие на активность фотосинтетического аппарата [Мокроносов, 1981]. Это может выражаться в снижении устьичной проводимости и скорости реакции карбоксилирования. Второй путь - создание буфера между фотосинтезирующими органами и использующими ассимиляты на рост. Известно достаточно много возможностей такого демпфирования [Мокроносов, 1981]. У карельской березы это также наблюдается, но имеет свои особенности. На определенном этапе роста происходило аномальное увеличение объема запасающей паренхимы, сахароза оттекала в периферийные слои коры [Новицкая, 2008]. Не совсем понятно, почему не реализовывался первый путь и CO_2 -газообмен EK не снижался по сравнению с $\mathit{E\Pi}$, где ростовые процессы протекали нормально, — связано ли это с недостаточной устьичной регуляцией или влияют какие-то другие метаболические причины?

Материалы и методы

Работа проводилась в начале июля 2011 г. на территории агробиологической станции КарНЦ РАН, расположенной в 2 км к югу от г. Петрозаводска. Использовались шесть растений БП и БК 7-летнего возраста, высотой около 4 м, росшие в 1 м друг от друга. Почва смесь торфа и песка. Верхние горизонты до 50-60 см содержали примерно 50 % гальки и мелкого шунгизита. Горизонт 60-70 см глина, смешанная с песком. Уровень грунтовых вод у объектов составлял в конце июня начале июля 70-80 см. Каждый раз за день до проведения эксперимента растения обильно поливали. Эксперименты по изучению газообмена проводили в дневной динамике с 10 до 17 часов с помощью портативного газоанализатора LI-840 (Li-Cor, USA). Воздушный поток из 6-литровой форемкости, закрепленной на высоте 3-4 м, нагнетали в листовую камеруприщепку оригинальной конструкции и далее через фильтры, краны, ротаметры - в газометрическую систему. Управление и запись данных осуществляла программа в компьютере, который через USB-порт подсоединяли к газоанализатору. Сначала измеряли параметры во входящем воздухе, затем лист вставляли в камеру-прищепку с площадью окошка 5,76 см² и измеряли параметры на выходе. При скорости потока воздуха через камеру 0,5 л мин стабилизация параметров происходила в течение 1-1,5 минуты. Далее камеру затемняли, и примерно через 30 секунд замеряли уровень темнового дыхания.

Температуру листа в камере контролировали с помощью медь-константановых термопар. При скоростях 0,4-0,5 л·мин воздух сменялся в камере каждые 0,5 сек, и перегрев листа не превышал на полном солнце 1,5 °C. Газоанализатор позволял измерять концентрации CO_2 в миллионных долях (ppm) и водяного пара в тысячных долях (ppt), а также точку росы (°C). На основании этих данных с учетом скорости движения воздуха через камеру рассчитывали нетто-фотосинтез (P) и транспирацию (E). По точке росы определяли насыщающую концентрацию водяного пара в воздухе, входящем в камеру, и дефицит давления водяного пара (D).

Устьичную проводимость листа для паров воды (gsw) рассчитывали по формуле $g_{sw} = E/(W_i - W_a)$ [Барри, Даунтон, 1987], где W_i – насыщающая концентрация водяного пара в межклетниках при температуре листа; W_a – концентрация водяных паров во входящем воздухе (измеряли газоанализатором). Величину, обратную устьичной проводимости, – устьичное сопротивление для молекул CO_2 (r_s) определяли по формуле $r_s = 1,6/g_{sw}$ [Барри, Даунтон, 1987].

Скорость ассимиляции (A) определяли как сумму наблюдаемого фотосинтеза (P) и абсолютной величины темнового дыхания (R). Суммарное сопротивление диффузии $CO_2(r_i)$ рассчитывали по формуле [Цельникер, 1978]:

$$r_t = (C_a - C_x)/A,$$
 (1)

где C_a — концентрация CO_2 в воздухе, C_x — концентрация CO_2 в хлоропластах. C_x приравнивалась к углекислотному компенсационному пункту (Γ), который определяли ранее с помощью газометрической системы Li-6200. Величина Γ в условиях хорошего водоснабжения деревьев у освещенных листьев при температуре 22–27 °C была близка к 70 мкмоль моль , что несколько выше, чем для сосны (61–63 мкмоль моль) [Болондинский, 2008] или для других растений, включая березу [Лайск и др. 1998; Eichelmann et al., 2004]. Общее сопротивление r_x можно представить как сумму сопротивлений:

$$r_t = r_a + r_s + r_m,$$
 (2)

где r_s — диффузионное сопротивление приграничного слоя листа, которое мы приравнивали к 0,5 с·см⁻¹ [Цельникер, 1978], r_s — устьичное сопротивление для CO_2 , r_m — мезофильное сопротивление. С учетом уравнений (1) и (2) получаем формулу для расчета $r_m = (C_s - C_s)/A - r_s - 0,5$.

Пигментный состав разновозрастных листьев березы измеряли с помощью спектрофотометра СФ-2000 (ОКБ «Спектр», Россия) в спиртовой вытяжке [Lichtenthaler, Wellbern, 1983]. Обработку экспериментальных данных проводили методами дисперсионного и корреляцион-

ного анализов. Проверку гипотез и оценку существенных различий между средними величинами осуществляли с помощью критерия Стьюдента при 5-процентном уровне значимости.

Результаты и обсуждение

Измерения фотосинтеза и транспирации производили в теплые безоблачные дни начала июля. Листья на завершающем этапе роста и закончившие рост выбирали преимущественно в верхних освещенных частях крон деревьев. Средние величины ΦAP , показанные датчиком, направленным на солнце, составляли 1800–2100 мкмоль $M^2 \cdot C^{-1}$, температура воздуха –22–23 °C и 24–27 °C в утренние и дневные часы соответственно, относительная влажность –46–53 %, дефицит водяного пара в воздухе 1,4–1,6 кПа. Данные условия являлись оптимальными для CO_2 -газообмена березы [Дроздов и др., 1995; Болондинский, 2010].

Расчеты, проведенные по всему массиву полученных результатов, не показали существенной разницы между параметрами для БК и БП. Проявились тенденции более высокой транспирации и устьичной проводимости у БП по сравнению с БК. Мезофильная проводимость и продуктивность транспирации, напротив, были выше у БК (табл.). Средние значения фотосинтеза, рассчитанные для сформировавшихся и молодых листьев карельской березы, составили соответственно $12,05 \pm 4,13$ и $9,01 \pm$ 4,17 мкмоль·м⁻²·с⁻¹, у березы повислой – 13,53 ± 4,44 и $10,84 \pm 3,65$ мкмоль·м⁻²·с⁻¹. При этом различия между молодыми и сформировавшимися листьями как у карельской березы, так и у березы повислой были значимыми. Ранее подобный результат мы получили на не испытывавших недостатка в почвенной влаге саженцах в вегетационных сосудах [Болондинский, Виликайнен, 2011]. В нашем эксперименте оказались также значимыми различия как между средними величинами r_{s} у сформировавшихся листьев березы повислой и карельской березы, так и величинами r_m .

Значения транспирации у сформировавшихся и молодых листьев карельской березы составляли соответственно 1,97 \pm 0,94 и 1,48 \pm 0,80 ммоль·м⁻²·с⁻¹, у березы повислой – 2,42 \pm 0,81 и 2,04 \pm 0,60 ммоль·м⁻²·с⁻¹. Просматривается тенденция более интенсивной транспирации у березы повислой. Значения устьичной проводимости для водяного пара составили у сформировавшихся и у молодых листьев карельской березы соответственно 0,36 \pm 0,20 и 0,32 \pm 0,15 см·с⁻¹, у березы повислой 0,53 \pm 0,19 и 0,41 \pm 0,19 см·с⁻¹. Снижение транспирации у молодых и сформи-

ровавшихся листьев БК по сравнению с БПв значительной степени было обусловлено устьичной проводимостью. Однако значения фотосинтеза, а следовательно, и общего сопротивления диффузии СО, у разных форм березы для сформировавшихся листьев были близки, в то время как устьичная проводимость различалась в 1,4 раза и стабильность r, обеспечивалась низкими значениями $r_{\scriptscriptstyle m}$. Проводимость мезофилла $(g = 1/r_m)$ или проводимость молекул CO_2 в жидкой фазе при их прохождении через клеточные стенки, мембраны, цитозоль и двойную мембрану хлоропласта к местам карбоксилирования в строме определяется прежде всего активностью ферментов [Лайск и др., 1998]. Более низкая устьичная проводимость у листьев карельской березы могла быть обусловлена снижением скорости движения влаги по стволу из-за свилеватости структурных элементов древесины, значительного уменьшения числа сосудов, увеличения количества клеток запасающей паренхимы и других структурных нарушений [Новицкая, 2008]. Это приводило к повышенному сопротивлению движению влаги по стволу, что находило отражение в уменьшении g_{s} . С другой стороны, уменьшение устьичной проводимости у БК, возможно, было связано с регуляцией фотосинтетической функции в рамках целого растения, вызванной торможением камбиального роста [Каспарова, 2006]. Однако у БК за счет активизации процессов карбоксилирования фотосинтез не снижался, а оставался в среднем по кроне на достаточно высоком уровне. Данная особенность карельской березы поддерживать определенное время повышенную концентрацию сахаров в точках роста, возможно, и вызывает нарушение ростовой функции и приводит к образованию паренхимных включений в ксилемную ткань [Новицкая, 2008].

Снижение фотосинтеза молодых листьев у обеих форм березы по сравнению со сформировавшимися примерно в 1,3 раза было обусловлено: у $Б\Pi$ – уменьшением устьичной (в 1,2 раза) и мезофильной (в 1,3 раза) проводимости; у БK устьичная проводимость почти не изменялась, в то время как мезофильная проводимость уменьшалась почти в 2,1 раза (табл.). Меньшее содержание хлорофилла ($X\Pi$) у молодых по сравнению с закончившими рост листьями являлось второй причиной более низкого поглощения ими CO_2 . Содержание $X\Pi$ а в среднем уменьшалось у молодых листьев по сравнению со сформировавшимися в 1,8 и 1,7 раза у EK и $E\Pi$ соответственно, а $X\Pi$ D – в 1,1 и 1,2 раза.

Сформировавшиеся листья $\mathit{БK}$ имели в 1,3 раза более высокую мезофильную проводимость, чем листья березы повислой. Устьичная же проводимость у $\mathit{Б\Pi}$ в 1,3 раза превышала таковую у $\mathit{БK}$. В результате суммарная проводимость (g_i), как и обратная величина — общее сопротивление диффузии CO_2 (r_i), у обеих форм березы были близки. Наблюдалась, как это показано в литературе [Корзухин и др., 2004], обратная зависимость g_s и g_m . У молодых листьев разница в величинах мезофильной проводимости была не столь существенной.

Средние значения фотосинтеза, транспирации и рассчитанных параметров листьев карельской березы и березы повислой

	P	E	$r_{\rm s}$	$g_{\scriptscriptstyle s}$	r _m	$g_{\scriptscriptstyle m}$	r_t	r_s/r_t	P/E
Параметры	мкмоль·м ⁻² ·С ⁻¹	МКМОЛЬ·М ⁻² ·С ⁻¹	C·CM ⁻¹	CM·C ⁻¹	C·CM ⁻¹	CM·C ⁻¹	C·CM ⁻¹	-	мкмоль CO ₂ (ммоль H ₂ O) ⁻¹
				Kape	льская бере	еза			
M	11,39	1,86	4,8	0,25	7,3	0,21	12,6	0,40	7,4
δ	4,28	0,92	2,2	0,10	3,6	0,17	3,8	0,18	3,7
	Береза повислая								
M	12,30	2,27	3,9	0,31	7,5	0,15	11,9	0,33	5,6
δ	3,38	0,75	1,8	0,11	2,8	0,06	3,6	0,10	1,5
	Карельская береза, молодые листья								
M	9,01	1,48	4,0	0,26	11,2	0,11	15,7	0,27	8,5
δ	3,17	0,80	0,6	0,04	3,2	0,08	3,6	0,08	5,8
	Карельская береза, сформировавшиеся листья								
M	12,05	1,97	5,1	0,25	6,2	0,23	11,8	0,44	7,2
δ	4,13	0,94	2,5	0,11	2,9	0,11	3,5	0,18	2,9
	Береза повислая, молодые листья								
M	10,36	2,04	4,4	0,27	8,8	0,13	13,7	0,32	5,2
δ	3,65	0,60	1,9	0,10	2,9	0,05	3,8	0,10	1,4
			Береза	повислая,	сформиров	авшиеся л	истья	-	
M	13,53	2,42	3,6	0,33	6,6	0,17	10,7	0,33	5,9
δ	4,44	0,81	1,8	0,12	2,4	0,06	3,1	0,11	1,6

Примечания. Р, Е, g_{s'} g_{m} – средние значения (M) нетто-фотосинтеза, транспирации, устьичной и мезофильной проводимости для CO_2 ; $r_{s'}$ $r_{m'}$ $r_{t'}$ – устьичное, мезофильное и общее сопротивление диффузии CO_2 соответственно; $r_{s'}$ / $r_{t'}$ – доля устьичного сопротивления в общем сопротивлении диффузии CO_3 ; P/E – продуктивность транспирации; δ – стандартное отклонение

Большой разброс значений фотосинтеза и транспирации листьев по кронам был вызван целым рядом факторов. Внешние факторы были достаточно стабильны, так как измерения проводились в солнечные дни. Значения ФАР, измеряемые датчиком, наведенным на солнце, практически не изменялись во времени, однако некоторые листья перед измерениями находились в полутени, а замеры фотосинтеза на них проводили при полном освещении. В ряде случаев листья реагировали на такую смену освещенности небольшим снижением фотосинтеза. Наблюдались слабые изменения температуры воздуха, D и r_{s} , значения которых возрастали примерно на 10-15 % к 15 часам по сравнению со значениями в 10-11 часов. Фотосинтез листьев в нижней части кроны был в среднем на 20 % ниже, чем в верхней. Побеги брахибластов поглощали СО, менее интенсивно, чем побеги ауксибластов. Из трех деревьев карельской березы лишь одно имело признаки узорчатой древесины. У двух других признаки «карелистости» были выражены очень слабо. Все эти факторы увеличивали вариабельность значений фотосинтеза и транспирации. Еще одна причина повышенной вариабельности, на наш взгляд, кроется в том, что листья БК вынуждены значительную часть времени работать в гиперфункциональном режиме. В целом такое состояние наблюдается у всех растений в период интенсивного роста. В соответствии с высоким уровнем запросов на ассимиляты возрастает и метаболическая нагрузка на фотосинтетический аппарат [Мокроносов, 1981]. Работа фотосинтетического аппарата в гиперфункциональном состоянии не может продолжаться длительное время, и за очень высоким поглощением СО, следует спад фотосинтетической активности. Мезофильная проводимость была у некоторых листьев при низком фотосинтезе более чем в два раза ниже среднего уровня. Возможно, именно поэтому коэффициент вариации для данного параметра у карельской березы достигал очень большого значения 62,4 %, в то время как у березы повислой он был существенно ниже. Устьичная проводимость также имела более высокий коэффициент вариации у карельской березы (37 %) по сравнению с березой повислой (12,6%).

Фотосинтез у карельской березы в ряде измерений достигал значительных величин, но наблюдалась его большая вариабельность у различных листьев. Хотя мы старались выбирать освещенные листья, разброс данных по кронам деревьев был очень существенным. Максимальное значение фотосинтеза у березы повислой составили 21,8 мкмольм²·с⁻¹, у ка-

рельской березы — 28,3 мкмоль·м·²·с·¹. При этом у карельской березы в один из дней на 40 измерений было зафиксировано 8 случаев, когда фотосинтез превышал 20 мкмоль·м·²·с·¹, а у березы повислой — всего три. Коэффициенты вариации значений фотосинтеза у карельской березы и березы повислой составляли соответственно 44,8 и 33,6. Для молодых листьев коэффициенты вариации также были высоки.

Хотя средние значения фотосинтеза у БК поддерживались на уровне фотосинтеза БП за счет интенсивных обменных процессов, устьичная регуляция была достаточно высокой и отношение r_r/r_r составило у БК 44 %, в то время как у *БП* она была ниже – 33 %. Примерно в 30 % измерений $r_{.}/r_{.}$ было больше 50 %, то есть устьичная регуляция являлась основной. Коэффициент корреляции Р и г составил для сформировавшихся листьев БК и БП 0,50 и 0,62 соответственно, для молодых – 0,62 и 0,67. В целом механизм устьичного ограничения фотосинтеза у БК функционировал, но поглощение углекислоты не уменьшалось из-за повышенной мезофильной проводимости, и у БК какое-то время концентрация сахаров в камбиальной зоне поддерживалась на высоком уровне [Галибина и др., 2011].

Выводы

- 1. Средние величины фотосинтеза карельской березы и березы повислой, рассчитанные более чем по ста измерениям в освещенной части кроны деревьев, близки друг к другу. Транспирация и устьичная проводимость у листьев карельской березы в среднем на 25 % ниже, чем у березы повислой.
- 2. У карельской березы, несмотря на снижение устьичной проводимости, фотосинтез оставался на уровне березы повислой, что было обусловлено значительной величиной мезофильной проводимости и указывает на высокий уровень процессов карбоксилирования. Возможно, это вызвано нарушениями регуляции фотосинтеза в рамках целого растения, в результате чего, несмотря на повышенную концентрацию сахаров в камбиальной зоне, не происходило его снижения.
- 3. Продуктивность транспирации у листьев карельской березы была в среднем на 32 % выше, чем у березы повислой. Более экономный расход почвенной влаги у карельской березы по сравнению с березой повислой может способствовать сохранению у нее высокого фотосинтеза на начальных этапах засухи.
- 4. Причиной более низкого фотосинтеза у листьев, заканчивающих рост, по сравнению с уже сформировавшимися было не только

уменьшение содержания хлорофилла, но и более низкие значения устьичной и мезофильной проводимости.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 13-04-00827A).

Литература

Барри Д. А., Даунтон У. Д. С. Зависимость фотосинтеза от факторов окружающей среды // В кн.: Фотосинтез / Под ред. Говинджи. М.: Мир, 1987. Т. 2. С. 273–364.

Болондинский В. К. Исследование зависимости фотосинтеза от интенсивности солнечной радиации, температуры и влажности воздуха у растений карельской березы и березы повислой // Труды КарНЦ РАН. 2010. № 2. С. 3–10.

Болондинский В. К. Устьичная регуляция фотосинтеза у сосны обыкновенной // Материалы всероссийской конференции «Фундаментальные и прикладные проблемы ботаники в начале XXI века». Часть 6. Экологическая физиология и биохимия растений. Петрозаводск, 2008. С. 15–17.

Болондинский В. К., Виликайнен Л. М. Исследование световой зависимости фотосинтеза у саженцев березы в норме и в условиях почвенной засухи // Материалы межд. конференции «Структурные и функциональные отклонения от нормального роста и развития растений под воздействием факторов среды». Петрозаводск, 2011. С. 38–42.

Галибина Н. А., Красавина М. С., Новицкая Л. Л., Софронова И. Н. Ферменты метаболизации сахарозы при формировании аномалий карельской березы // Структурные и функциональные отклонения от нормального роста и развития растений под воздействи-

ем факторов среды. Петрозаводск: КНЦ РАН, 2011. С. 79-84.

Дроздов С. Н., Попов Э. Г., Курец В. К., Таланов А. В., Обшатко Л. А., Ветчинникова Л. В. Влияние света и температуры на нетто-фотосинтез и дыхание Betula pendula var. pendula и Betula pendula var. carelica (Betulaceae) // Бот. журн. 1995. Т. 80, № 3. С. 60–64.

Каспарова И. С. Эпигенетическая регуляция фотосинтетической ассимиляции O_2 у хлопчатника. Автореферат дис. ... канд. биол. наук, 2006. 27 с.

Корзухин М. Д., Выгодская Н. Н., Милюкова И. М., Татаринов Ф. А., Цельникер Ю. Л. Применение объединенной модели фотосинтеза и устъичной проводимости для анализа ассимиляции CO_2 ели и лиственницы в лесах России // Физиол. раст. 2004. Т. 51, № 3. С. 341–354.

Лайск А., Расулов В. Г., Лорето Ф. Исследование теплового повреждения фотосинтеза методами газообмена и флуоресценции хлорофилла // Физиология растений. 1998. Т. 45. С. 489–499.

Мокроносов А. Т. Онтогенетический аспект фотосинтеза. М.: Наука, 1981. 196 с.

Новицкая Л. Л. Карельская береза: механизмы роста и развития структурных аномалий. Петрозаводск, 2008. 143 с.

Цельникер Ю. Л. Физиологические основы теневыносливости древесных растений. Л.: Наука, 1978. 215 с.

Lichtenthaler H. K., Wellbern A. R. Determination of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents // Biochemical Society Transactions. 1983. Vol. 11. P. 591–592.

Eichelmann H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Mols T., Kasparova I., Vapaavuori E. & Laisk A. Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in $\rm CO_2$ and $\rm O_3$ -enriched atmospheres // Plant, Cell and Environment. 2004. Vol. 27. P. 479–495.

СВЕДЕНИЯ ОБ АВТОРАХ:

Болондинский Виктор Константинович

старший научный сотрудник, к. б. н. Институт леса Карельского научного центра РАН ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910 эл. почта: bolond@krc.karelia.ru тел.: (8142) 768160

Холопцева Екатерина Станиславовна

старший научный сотрудник, к. б. н. Институт биологии Карельского научного центра РАН ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910 эл. почта: holoptseva@krc.karelia.ru тел.: (8142) 762712

Bolondinskii, Victor

Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia e-mail: bolond@krc.karelia.ru tel.: (8142) 768160

Kholoptseva, Ekaterina

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia e-mail: holoptseva@krc.karelia.ru tel.: (8142) 762712